حد (نظریه رستهها)
در نظریه رستهها که شاخه ای از ریاضیات است، مفهوم مجرد حد (به انگلیسی: Limit) خواص اساسی سازه های جهانی چون ضرب، عقببرها و حد معکوس را در خود جمع می کند. مفهوم دوگان آن یعنی همحد سازه هایی چون اجتماعات مجزا، جمعهای مستقیم، همضربها، برونبرها و حد مستقیم را تعمیم می دهد.
همچون مفاهیم خواص جهانی و تابعگونهای الحاقی که قویاً به هم مرتبطند، حد و همحد نیز در مراتب بالای تجرید وجود دارند. به منظور فهمشان ابتدا باید مثال هایی که این مفاهیم سعی بر تعمیمشان دارند را مطالعه کرد.
تعریف
حدها و همحدها در رسته ای چون به کمک نمودارها در تعریف می شوند. به طور صوری، یک نمودار به شکل در تابعگونی از به است:
رسته را می توان به صورت رسته اندیس و نمودار را به عنوان اندیسگذار اشیاء و ریخت ها در دید که الگوی اندیسگذاری اش را از رسته اندیس می گیرد. اغلب به مواردی علاقهمندیم که در آن رسته ای کوچک یا حتی متناهی باشد. یک نمودار را کوچک یا متناهی گوییم هرگاه به ترتیب کوچک یا متناهی باشد.
حد
فرض کنید یک نمودار به شکل در رسته ای چون باشد. یک مخروط به شیئی چون از است به همراه خانواده از ریختها که توسط اشیاء از اندیس شده باشند، چنان که برای هر ریخت در داشته باشیم .
یک حد برای نمودار مخروطی چون به است چنان که برای هر مخروط به وجود داشته باشد ریخت یکتایی چون چنان که برای تمام در داشته باشیم :
یادداشتها
- مشارکتکنندگان ویکیپدیا. «Limit (Category Theory)». در دانشنامهٔ ویکیپدیای انگلیسی، بازبینیشده در ۷ سپتامبر ۲۰۱۹.
منابع
- Adámek, Jiří; Horst Herrlich; George E. Strecker (1990). Abstract and Concrete Categories (PDF). John Wiley & Sons. ISBN 0-471-60922-6.
- Mac Lane, Saunders (1998). Categories for the Working Mathematician. Graduate Texts in Mathematics. 5 (2nd ed.). Springer-Verlag. ISBN 0-387-98403-8. Zbl 0906.18001.
- Borceux, Francis (1994). "Limits". Handbook of categorical algebra. Encyclopedia of mathematics and its applications 50-51, 53 [i.e. 52]. Volume 1. Cambridge University Press. ISBN 0-521-44178-1.