مکمل متعامد
در جبر خطی، و آنالیز تابعی، مکمل متعامد (Orthogonal complement) مفاهیم مربوط به تعامد دو خط، دو صفحه، یا یک خط و یک صفحه بر یکدیکر را از فضای اقلیدسی اقتباس کرده و آنها را به تعامد زیرفضاهای مربوط به فضاهای ضرب داخلی گسترش و امتداد میدهد.
تعریف
مکمل متعامد یک زیرفضای از یک فضای ضرب داخلی عبارت است از مجموعهٔ تمامی بردارهای موجود در که بر هرکدام از بردارهای عمود باشند. یعنی:
مثال:
چنانچه را فضای سهبعدی xyz و را زیرفضای xy آن در نظر بگیریم، محور z مکمل متعامد صفحه xy یعنی خواهد بود، چرا که همهٔ بردارهای موجود روی محور z بر هرکدام از بردارهای درون صفحهٔ xy عمود است.
منابع
- Riesz, F. and Sz.-Nagy, B.: Functional Analysis, Dover Publications, 1990. ISBN 0-486-66289-6
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.