اشتراک (نظریه مجموعه‌ها)

مجموعهٔ شامل عضوهای مشترک دو مجموعه را اشتراک آنها می‌نامیم و آن را با نماد ∩ نشان می‌دهیم مثل : A∩B

تعریف

اگر S مجموعه‌ای ناتهی از مجموعه‌ها باشد و عضو دلخواهی از S، اشتراک همه اعضای S که آن‌را با یا نشان می‌دهیم به‌صورت زیر تعریف می‌شود:

مجموعه بالا طبق اصل تصریح وجود دارد و با استفاده از اصل موضوع گسترش می‌توان نشان داد که یکتاست.

اشتراک "صفر"تا مجموعه در حالت کلی تعریف نمی‌شود؛ اما در یک مسئله خاص اگر مجموعه مرجع U باشد، تعریف می‌شود .

اشتراک دو مجموعه دلخواه A و B را با نشان داده و می‌خوانیم "A اشتراک B". اشتراک سه مجموعه A، B و C را با ،... و اشتراک n مجموعه را با نشان می‌دهیم. می‌توان نشان داد که

خواص اشتراک

مهم‌ترین ویژگی اشتراک دسته‌ای از مجموعه‌ها این است که زیرمجموعه همه آن‌هاست. فی‌الواقع اشتراک آنها بزرگ‌ترین مجموعه‌ایست که این ویژگی را دارد.

اگر اجتماع دو مجموعه A و B را با نشان دهیم، به ازای هر سه مجموعه A، B و C داریم:

اگر و تنها اگر .

جستارهای وابسته

منابع

    • Enderton, H. B. Elements of Set Theory, 2nd edition, ACADEMIC Press, Inc., 1977.
    عملیات دوتایی
    عددی تابعی مجموعه‌ای ساختاری
    مقدماتی

    + جمع
    تفریق
    × ضرب
    ÷ تقسیم
    ^ توان

    حسابی

    div خارج قسمت اقلیدسی
    mod باقی‌مانده اقلیدسی
    بزرگ‌ترین مقسوم‌علیه مشترک
    کوچک‌ترین مضرب مشترک

    ترکیباتی

    () ضریب دوجمله‌ای
    P جایگشت
    C ترکیب

    ترکیب
    کانولوشن
    جبر مجموعه‌ها

    اجتماع
    \ متمم نسبی
    اشتراک
    Δ تفاضل متقارن

    ترتیب کلی

    min کمینه
    max بیشینه

    توری‌ها

    کرانه تحتانی
    کرانه فوقانی

    مجموعه‌ها

    × ضرب دکارتی
    اجتماع منفصل
    ^ توان مجموعه‌ای

    گروه‌ها

    حاصل‌جمع مستقیم
    حاصل‌ضرب آزاد
    produit en couronne

    مدول‌ها

    ضرب تانسوری
    Hom هومومورفیزم
    Tor پیچش
    Ext extensions

    درخت‌ها

    enracinement

    واریته‌های متصل

    # جمع متصل

    فضاهای نقطه‌دار

    bouquet
    smash produit
    joint

    بُرداری
    (.) ضرب اسکالر
    ضرب برداری
    جبری
    [,] کروشه لی
    {,} کروشه پواسون
    ضرب خارجی
    هومولوژی
    cup-produit
    حاصل‌ضرب اشتراک
    ترتیبی
    + الحاق
    منطق بولی
    عطف منطقی فصل منطقی یای انحصاری استلزام منطقی اگر و فقط اگر
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.