مهبانگ
نظریه مِهبانگ یا بیگ بنگ (به انگلیسی: Big Bang Theory) تولد زمان و مدل کیهانشناسی پذیرفتهشده جهان، از کهنترین دوران شناختهشده و تکامل آن در اندازه و مقیاس بزرگ است.[1][2][3] این نظریه بیان میکند که گیتی از یک وضعیت بسیار چگال (متراکم) نخستین آغاز شده و در گذر زمان انبساط یافتهاست[4][5] این نظریه طیف گستردهای از پدیدههای مشاهدهشده را به خوبی توضیح میدهد. از جمله این پدیدهها میتوان به فراوانی عناصر سبک اولیه، تابش زمینه کیهانی، ساختار بزرگ مقیاس و قانون هابل اشاره نمود.[6] اگر در زمان به عقب برگردیم، به نقطهای در گذشته میرسیم که در آن قوانین فیزیکی شناختهشده کارایی خود را از دست میدهند و نقطه تکینگی نام دارد. این نقطه، نقطه پیدایش گیتی است و بر اساس اندازهگیریهای جدید، این لحظه تقریباً ۱۳٫۸ میلیارد سال پیش رخ دادهاست و از این رو سن گیتی ۱۳٫۸ میلیارد سال تخمین زده میشود.[7] پس از انبساط اولیه گیتی به اندازه کافی سرد شد که امکان پیدایش ذرات زیراتمی و بعدها اتمهای ساده، پدید آید. به هم پیوستن ابرهای غولپیکر از عناصر اولیه بر اثر نیروی گرانش، باعث پیدایش ستارگان و کهکشانها شد.
نوشتاری از مجموعهی |
کیهانشناسی فیزیکی |
---|
|
از زمانی که ژرژ لومتر، کشیش و اخترشناس بلژیکی، برای نخستین بار در سال ۱۹۲۷ متوجه شد که انبساط جهان را میتوان در زمان رو به عقب دنبال نمود تا به نقطه اولیه رسید، تاکنون دانشمندان متعددی بر پایه ایده انبساط جهان نظریهپردازی کردهاند. اگرچه در ابتدا جامعه علمی به دو دسته طرفداران نظریه مهبانگ و نظریه حالت پایدار تقسیم میشد، اما شواهد تجربی کشفشده در گذر زمان، درستی نظریه مهبانگ را تأیید میکنند.[8] در سال ۱۹۲۹، ادوین هابل با بررسی پدیده انتقال به سرخ در کهکشانها به این نتیجه دست یافت که کهکشانها در حال دور شدن از یکدیگر هستند. این کشف مهمی بود که با فرضیه جهان در حال انبساط سازگار بود. در سال ۱۹۶۴ تابش زمینه کیهانی کشف شد، که مدرکی کلیدی در تأیید مدل مهبانگ محسوب میشد، زیرا این نظریه وجود تابش پسزمینه در سراسر جهان را پیش از کشف آن پیشبینی کردهبود. به تازگی، بررسی انتقال به سرخ در ابرنواخترها نشان داد که سرعت انبساط گیتی نیز در حال افزایش است. علت فزونی یافتن سرعت انبساط گیتی، وجود انرژی تاریک است.[9] با استفاده از قوانین فیزیکی شناختهشده میتوان جزئیات ویژگیهای جهان را در گذشته تا حالت نخستین چگالی و دمای بسیار بالا محاسبه نمود.[10][11][12] مرکز اخترفیزیک هاروارد-اسمیتسونین (CFA) میگوید: سناریوی مهبانگ دربارهٔ منشأ جهان هستی کاملاً ساکت است.[13]
بررسی کلی
ادوین هابل، اخترشناس آمریکایی مشاهده نمود که میان فاصله ما تا کهکشانهای دوردست و میزان انتقال به سرخ آنها رابطه محکمی وجود دارد. این مشاهده اینگونه تفسیر شد که تمام کهکشانها در حال دور شدن از ما هستند و سرعت دورشدن آنها با فاصلهشان از ما متناسب است: بدون توجه به جهتشان، هر چه دورتر باشند، سرعت دور شدنشان نیز بیشتر است.[18] اما اگر اصل کوپرنیکی(زمین در مرکز گیتی نیست) را بپذیریم، تنها توضیح ممکن این است که تمام نواحی قابل مشاهده فضا در حال دور شدن از تمام نواحی دیگر هستند. پس امروزه میدانیم که فاصله میان کهکشانها همواره در حال افزایش بودهاست، و این یعنی در گذشته آنها به هم نزدیکتر بودهاند. انبساط دائمی گیتی بدین معنی است که گیتی در گذشته فشردهتر و داغتر بودهاست.
شتابدهندههای بزرگ ذرات میتوانند شرایطی که در زمان بسیار اندکی پس از پیدایش گیتی بر آن حاکم بودهاند را شبیهسازی کنند و با استفاده از آنها میتوان جزئیات مدل مهبانگ را تأیید یا اصلاح نمود. هرچند که این شتابدهندهها قادر به شبیهسازی شرایط گیتی در ابتداییترین لحظات پس از مهبانگ نیستند و این نخستین لحظههای پیدایش گیتی هنوز به خوبی درک نشده و پژوهش و گمانهزنی در این زمینه همچنان در جریان است.
نخستین ذرات زیر اتمی پروتونها، نوترونها و الکترونها بودند. اگرچه هستههای اتمهای ساده در جریان هستهزایی مهبانگ و در سه دقیقه نخست عمر گیتی شکل گرفتند، اما تشکیل اتمهای خنثی، هزاران سال طول کشید. بیشتر اتمهایی که توسط مهبانگ ایجاد شدند هیدروژن، به همراه هلیم و لیتیم بودند. ابرهای غولپیکر گازی متشکل از این عناصر اولیه از طریق گرانش به هم پیوستند تا ستارهها و کهکشانها را پدیدآورند و عناصر سنگینتر نیز در درون ستارهها یا در حین انفجارهای ابرنواختری شکل گرفتند.
نظریه مهبانگ، توضیح کاملی برای طیف گستردهای از پدیدههای مشاهده شده، از جمله فراوانی عناصر سبک، تابش زمینه کیهانی، ساختار بزرگ مقیاس و قانون هابل ارائه میدهد.[6] چارچوب مدل مهبانگ بر نظریه نسبیت عام اینشتین و همچنین فرضهایی چون یکنواختی و همچنین همسانگرد بودن فضا استوار است. معادلات حاکم بر آن توسط الکساندر فریدمان فرمولبندی شدند و البته راهحلهای مشابهی نیز توسط ویلم دو سیتر ارائه شد. از آن زمان تاکنون دانشمندان اخترفیزیک مشاهدات تجربی و نظریات جدیدی را به مدل مهبانگ افزودهاند وشکل پارامتریشده آن در مدل لامبدا-سیدیام، چارچوب پژوهشهای نظری کیهانشناسی امروزی را تشکیل میدهد. مدل لامبدا-سیدیام مدل استاندارد کیهانشناسی مهبانگ است و سادهترین مدلی است که توضیحات نسبتاً خوبی برای بسیاری از پدیدهها ارائه میدهد.
گاهشمار مهبانگ
نقطه تکینگی
اگر با در نظر داشتن نظریه نسبیت عام، انبساط گیتی را در جهت معکوس در زمان دنبال کنیم، جهان بهطور پیوسته منقبض خواهد شد و دمای آن افزایش مییابد تا سرانجام به نقطهای در گذشته متناهی با چگالی و دمای بینهایت برسد.[19] این نقطه یک نقطه تکینگی گرانشی است و نشان میدهد که نظریه نسبیت عام و سایر قوانین فیزیک در این نقطه با شکست مواجه میشوند و قابل استفاده در مورد این نقطه از زمان نیستند. اینکه با برونیابی تا چه اندازه میتوانیم به این نقطه نزدیک شویم جای بحث دارد اما قطعاً نمیتوانیم از پایان دوره پلانک به این نقطه نزدیکتر شویم. گاهی این نقطه تکینگی، با نام مهبانگ خوانده میشود.[20] اما واژه مهبانگ برای اشاره به خود حالت داغ و متراکم اولیه نیز به کار میرود.[21]هیچ اجماعی در مورد اینکه چه بازهای از زمان مهبانگ نامیده شود، وجود ندارد. برای برخی از نویسندهها این زمان تنها شامل لحظه اولیه میشود و برای برخی شامل کل تاریخ جهان. معمولاً حداقل چند دقیقه اول (که طی آن هلیم تشکیل میشود) را جز مهبانگ میدانند.[22] (هستهزایی مهبانگ)که میتوان آن را تولد گیتی دانست. براساس اندازهگیری انبساط با استفاده از روشهای ابرنواخترهای نوع Ia، اندازهگیریهای نوسانات دما در تابش زمینه کیهانی و اندازهگیریهای توابع همبستگی کهکشانها، سن کنونی جهان ۰٫۰۳۷±۱۳٫۷۹۸ میلیارد سال تخمین زدهشدهاست.[23] همخوانی نتایج حاصل از این سه روش مستقل اندازهگیری، تأییدی محکم بر مدل لامبدا-سی دی ام است که جزئیات محتوای گیتی را توصیف میکند.
تورم کیهانی و باریونزایی
گمانهزنیهای نظری بسیاری در مورد لحظات نخستین مهبانگ صورت گرفتهاست. در مدلهای رایج، گیتی در این لحظات بهطور همگن و همسانگرد از انرژی با چگالی بسیار زیاد و دماها و فشارهای بسیار بالا تشکیل شده بود و با سرعت بسیار زیادی در حال انبساط و سرد شدن بود. تقریباً −۳۷۱۰ ثانیه پس از شروع انبساط، یک گذار فاز باعث تورم کیهانی شد که طی آن جهان رشدی نمایی داشت.[24] پس از توقف تورم، جهان متشکل از یک پلاسمای کوارک-گلوئون و همچنین همه ذرات بنیادی دیگر بود.[25] دما به اندازهای بالا بود که حرکات تصادفی ذرات در سرعتهای نسبیتی انجام میگرفت و همه انواع جفتهای ماده-پادماده در برخوردها دائماً ایجاد و نابود میشدند.[4] در نقطهای از زمان، واکنشی ناشناخته به نام باریون زایی (به انگلیسی: Baryogenesis) باعث نقض پایستگی عدد باریونی شد و در نتیجه آن تعداد کوارکها و لپتونها نسبت به پادکوارکها و پادلپتونها به میزان بسیار بسیار اندکی افزایش یافت (به اندازه یک در سی میلیون). این افزایش اندک مسبب برتری ماده بر ضد ماده در جهان کنونی است.[26]
سرد شدن
ادامه یافتن کاهش دما و چگالی گیتی باعث کاهش انرژی ذرات میشد. تغییر فازهای تقارن شکن سبب شدند تا نیروهای بنیادی فیزیک و پارامترهای ذرات بنیادی به شکلی درآیند که امروزه مشاهده میشوند.[27] پس از گذشت حدود −۱۱۱۰ ثانیه کمی از گمانهزنی کاسته میشود، زیرا انرژی ذرات کاهش مییابد و به مقادیری میرسد که در آزمایشگاههای ذرات بنیادی با تجهیزات کنونی قابل دسترسی هستند. پس از حدود -۶۱۰ ثانیه کوارکها و گلوئونها ترکیب شدند تا باریونهایی مانند پروتون و نوترون را پدیدآورند. فزونی اندک تعداد کوارکها به پادکوارکها باعث فزونی اندک تعداد باریونها به پادباریونها شد. دما در این زمان دیگر آن قدر بالا نبود که جفتهای پروتون-پادپروتون (و یا نوترون-پادنوترون) جدیدی بتوانند بهوجود آیند، از این رو فرایند نابودسازی گستردهای آغاز شد و ذرات و پادذرات شروع به نابودسازی یکدیگر نمودند و از هر ۱۰۱۰ پروتون و نوترون اولیه تنها یکی باقیماند و هیچ پادذرهای نیز باقی نماند. فرایند نابودسازی مشابهی نیز در ثانیه ۱، میان الکترونها و پوزیترونها آغاز شد و پس از پایان این نابودسازیها دیگر ذرات در سرعتهای نسبیتی حرکت نمیکردند و چگالی انرژی گیتی از فوتونهاها (به همراه درصد اندکی نوترینو) تشکیل میشد.
چند دقیقه پس از آغاز انبساط که دمای گیتی به یک میلیارد کلوین کاهش یافته بود و چگالی آن در حد چگالی هوا بود، نوترونها و پروتونها با یکدیگر ترکیب شدند تا در جریان فرایندی که به نام هسته زایی مهبانگ خوانده میشود هستههای دوتریم و هلیم تشکیل گردند.[28] بیشتر پروتونها ترکیب نشدند و به صورت هستههای هیدروژن باقیماندند. همچنانکه جهان رو به سرد شدن میگذاشت، چگالی جرم سکون انرژی ماده از نظر گرانشی بر چگالی جرم سکون-انرژی تابش فوتون غلبه نمود. پس از ۳۷۹۰۰۰ سال الکترونها و هستهها با یکدیگر تر کیب شدند و اتمهای خنثی پدید آمدند (غالباً اتم هیدروژن). بدین ترتیب تابش از ماده جدا شد و بدون مانع جدی در فضا منتشر شد. این تابش با نام تابش زمینه کیهانی خوانده میشود.[29] به فاصله اندکی پس از مهبانگ در ۱۳٫۸ میلیارد سال قبل و در دورهای قابل سکونت از تاریخ جهان و زمانی که تنها ۱۰–۱۷ میلیون سال عمر داشت، امکان پیدایش شیمی حیات و آغاز زندگی وجود داشتهاست.[30][31][32]
تشکیل ساختار
در طی یک دوره زمانی طولانی برخی نواحی از گیتی تقریباً یکنواخت که اندکی چگالتر از بقیه بودند به تدریج توسط گرانش ماده موجود در نزدیکی خود را جذب نموده و چگالتر شدند و در نتیجه آن، ابرهای گازی، ستارهها، کهکشانها و سایر ساختارهای نجومی قابل مشاهده امروزی پدید آمدند. جزئیات این فرایند به مقدار و نوع ماده موجود در گیتی بستگی دارد. جهار نوع ممکن از ماده عبارتند از ماده تاریک سرد، ماده تاریک گرم، ماده تاریک داغ و ماده باریونی. بهترین اندازهگیریهای کنونی (توسط دبلیومپ) نشانگر این است که دادهها با مدل لامبدا-سی دی ام همخوانی دارند. این مدل فرض میکند که ماده تاریک موجود در گیتی، سرداست (ماده تاریک گرم توسط فرایند بازیونیدهشدن اولیه از بین میرود[33]) و در حدود ۲۳٪ از ماده-انرژی در جهان را تشکیل میدهد در حالی که سهم ماده باریونی (معمولی) تنها ۴٫۶٪ است.[34]
در مدل گستردهتری که ماده تاریک داغ به شکل نوترینو را نیز شامل شود، چگالی فیزیکی باریون Ωbh2 در حدود ۰٫۰۲۳ تخمین زده میشود و چگالی ماده تاریک سرد Ωch2 در حدود ۰٫۱۱ و چگالی نوترینو Ωvh2 کمتر از ۰٫۰۰۶۲ خواهد بود.
انبساط شتابدار کیهانی
ردیفهای مستقلی از شواهد تجربی از ابر نو اخترهای نوع Ia و تابش زمینه کیهانی بر این واقعیت دلالت دارند که گیتی امروزه توسط گونه اسرارآمیزی از انرژی به نام انرژی تاریک تسخیر شدهاست که ظاهراً در تمام فضا پخش شدهاست. مشاهدات پیشنهاد میدهند که ۷۳٪ از کل چگالی انرژی گیتی از انرژی تاریک تشکیل شدهاست. به احتمال زیاد، هنگامی که گیتی بسیار جوان بود از انرژی تاریک آکنده بودهاست. البته فضا بسیار کمتر و همه چیز به یکدیگر نزدیک تر بود. نیروی گرانش قویتر بود و به آرامی روند انبساط جهان را کند میکرد. اما در گذر چند میلیارد سال، فراوانی رو به افزایش انرژی تاریک باعث شتاب گرفتن انبساط کیهانی شد. انرژی تاریک در سادهترین شکل به عنوان ثابت کیهانی در معادلات میدان اینشتین در نظریه نسبیت عام فرمولبندی میشود. اما جزئیات معادله حالت آن و ارتباطش با مدل استاندارد ذرات کماکان مورد پژوهش نظری و تجربی است.[9]
مدل کیهانشناسی لامبدا سی دی ام میتواند با قدرت بالایی سراسر دوره تکامل کیهان پس از دوره تورم کیهانی را مدلسازی کند. این مدل از چارچوبهای مستقل مکانیک کوانتوم و نسبیت عام انیشتین بهره میگیرد. چنانچه پیشتر عنوان شد، هیچ مدلی قادر به توصیف کنشهای قبل از ۱۰−۱۵ ثانیه اول نیست. ظاهراً یک نظریه وحدت یافته گرانش کوانتومی برای فایق آمدن بر این محدودیت لازم است. درک اولین دورههای تاریخ گیتی در حال حاضر یکی از بزرگترین مسائل حل نشده فیزیک است.
پیشفرضهای نظریه مهبانگ
نظریه مهبانگ بر دو فرض اساسی استوار است: جهان شمول بودن قوانین فیزیکی و اصل کیهانشناختی. اصل کیهان شناختی بیان میکند که در مقیاس بزرگ جهان همگن و همسانگرد است.
در ابتدا این ایدهها عنوان اصل پذیرفتهشده بودند، اما امروزه تلاشهایی برای آزمودن درستی آنها در جریان است؛ مثلاً این مشاهده که بیشترین انحراف از ثابت ساختار ریز در قسمت عمدهای از عمر جهان در حد ۱۰−۵ است، آزمونی برای فرض نخست بهشمار میرود.[35] همچنین نسبیت عام نیز آزمونهای دشواری را در مقیاس منظومه شمسی و ستارگان دوتایی پشت سر گذاردهاست.[notes 1]
اگر گیتی در مقیاسهای بزرگ و وقتی از روی زمین مشاهده شود، همسانگرد باشد، اصل کیهانشناختی را میتوان از اصل سادهتری به نام اصل کوپرنیکی نتیجه گرفت. بنا بر اصل کوپرنیکی، هیچ نقطه مشاهده برتر و ویژهای وجود ندارد. تا امروز اصل کیهانشناختی از طریق مشاهدات تابش زمینه کیهانی تا حد ۱۰−۵، تأیید شدهاست. بنا بر اندازهگیریهای انجام شده، جهان در مقیاسهای بزرگ در سطح ۱۰٪ یکنواخت است.[36]
انبساط فضا
نظریه نسبیت عام، فضازمان را توسط یک متریک توصیف میکند که فواصلی را که نقاط را از یکدیگر جدا کرده، تعریف میکند. خود این نقاط که ممکن است کهکشان، ستاره یا اجسام دیگر باشند، توسط یک شبکه یا دستگاه مختصات که کل فضازمان را پوشش میدهد، تعریف میشوند. اصل کیهان شناختی بیان میکند که جهان در مقیاس بزرگ همسانگرد و همگن است که این موضوع به شکل منحصربهفردی با متریک فریدمان-لومتر-رابرتسون-واکر همخوانی دارد. این متریک یک فاکتور مقیاس دارد که رابطه تغییر اندازه گیتی با زمان را توصیف میکند. با استفاده از آن میتوانیم دستگاه مختصات ویژهای به نام دستگاه مختصات همراه تعریف کنیم. در این دستگاه مختصات، خود دستگاه نیز همگام و همراستا با انبساط گیتی منبسط میشود و از این رو اجسامی که تنها دلیل حرکتشان، انبساط گیتی است، در نقاط ثابتی روی این شبکه باقی میمانند و حرکتی ندارند. در حالیکه فاصله مختصاتی(فاصله همراه) آنها ثابت میماند، فاصله فیزیکی آنها متناسب با فاکتور مقیاس گیتی افزایش مییابد.[37]
مهبانگ مانند انفجار مادی نیست که به سمت خارج حرکت و یک جهان خالی از پیش موجود را پر کند، بلکه در این مورد، خود فضا نیز با گذر زمان منبسط میشود و فاصله فیزیکی بین دو نقطه همراه افزایش مییابد. به بیان دیگر مهبانگ انفجاری در فضا نیست بلکه انفجار خود فضاست.[4] از آنجاییکه متریک فریدمان-لومتر-رابرتسون-واکر(FLRW) بر پایه فرض توزیع یکنواخت ماده و انرژی استوار است، تنها در مقیاسهای بزرگ مصداق دارد و تودههای محلی ماده مانند کهکشان ما چون در دام گرانش محدود هستند، انبساط بزرگ-مقیاس گیتی را تجربه نمیکنند.
افقها
یکی از ویژگیهای مهم مهبانگ، وجود افق هاست. از آنجا که سن گیتی متناهی است و نور نیز با سرعتی متناهی حرکت میکند، ممکن است رویدادهایی در گذشته رخ داده باشند که هنوز نور آنها زمان کافی برای رسیدن به ما را نداشتهاست. این موضوع محدودیتی از نظر دورترین جسمی که قابل مشاهده باشد، بهوجود میآورد که افق گذشته خوانده میشود. و همچنین بالعکس چون گیتی در حال انبساط است و اجسام دورتر حتی با سرعت بیشتری از ما دور میشوند نوری که از جانب ما منتشر شود ممکن است هرگز به اجسام دور نرسد زیرا این اجسام نیز پیوسته در حال عقب رفتن هستند. این محدودیت یک افق آینده تعریف میکند که محدوده رویدادهایی در آینده که میتوانیم تحت تأثیر قرار دهیم را تعیین میکند. وجود هر یک از این افقهای گذشته و آینده وابسته به جزئیات مدل متریک فریدمان-لومتر-رابرتسون-واکر است که گیتی را توصیف میکند. درکی که ما از گیتی در دوران بسیار قدیم آن داریم پیشنهاد میکند که افق گذشته وجود دارد هرچند که در عمل عدم شفافیت گیتی در دوران بسیار دور گذشته نیز دید ما را محدود میکند. پس اگرچه افق ما در فضا عقبنشینی میکند، دید ما هرگز نمیتواند به گذشته دورتر برسد. اگر گیتی به انبساط شتابدارش ادامه دهد یک افق آینده نیز وجود خواهد داشت.[38]
تاریخچه
واژهشناسی
واژه «مِهبانگ» ترجمه پارسی واژه Big Bang از زبان انگلیسی است. در زبان پارسی یکی از معانی «مِه»، «بزرگ» است و بانگ به معنی آوای بلند است. ابداع واژه Big Bang به فرد هویل (به انگلیسی: Fred Hoyle) نسبت داده میشود که برای نخستین بار در سال ۱۹۴۹ از این واژه در یک برنامه رادیویی استفاده کرد. در آن زمان بسیاری بر این باور بودند که هویل که خود طرفدار نظریه حالت پایدار بود با طعنه از این واژه استفاده نمودهاست اما خود وی صریحاً این ادعاها را رد کرد و اعلام نمود که این واژه را تنها برای تصویر کردن اختلاف بین این دو نظریه استفاده نمودهاست.[39][40][41]
شکلگیری نظریه مهبانگ
نظریه مهبانگ از مشاهدات ساختار گیتی و بررسیهای نظری شکل گرفت. در سال ۱۹۱۲ وستو اسلیفر (به انگلیسی: Vesto Slipher) اثر دوپلر را در یک سحابی مارپیچی (سحابی مارپیچی نامی منسوخشده برای کهکشان مارپیچی است) اندازهگیری کرد و خیلی زود دریافت که تمام این سحابیها در حال دور شدن از زمین هستند. او در آن زمان متوجه جنبههای کیهان شناختی این کشف نشد. در واقع در آن زمان بحثی داغ پیرامون اینکه این کهکشانها ممکن است جهانهای جزیرهمانند دیگری باشند، در جریان بود.[43][44] ده سال بعد یک کیهانشناس و ریاضیدان روسی به نام الکساندر فریدمان بر پایه معادلات میدان نسبیت عام اینشتین معادلات فریدمان را ارائه داد که نشان میداد بر خلاف مدل جهان ایستا که اینشتین نیز از آن حمایت میکرد، جهان ممکن است در حال انبساط باشد.[45] در سال ۱۹۲۴ اندازهگیری فاصله بزرگ ما تا نزدیکترین کهکشان مارپیچی توسط ادوین هابل نشان داد که این اجسام کهکشان هستند. در سال ۱۹۲۷ ژرژ لومتر؛ فیزیکدان و کشیش کاتولیک؛ با نتیجهگیری از معادلات فریدمان پیشنهاد داد که دور شدن کهکشانها ناشی از انبساط کیهان است.[46]
در سال ۱۹۳۱ لومتر پارا فراتر نهاد و پیشنهاد کرد که اگر انبساط گیتی را در زمان به عقب برگردانیم، هر چه عقبتر رویم جهان کوچکتر میشود و در نهایت در یک زمان متناهی در گذشته کل گیتی در یک نقطه فشردهمیشود؛ یک اتم نخستین که مکان و زمانی است که در آن فابریک زمان و فضا به وجود آمد.[47]
ادوین هابل از سال ۱۹۲۴ با زحمت فراوان با استفاده از تلسکوپ ۱۰۰ اینچی هوکر در رصدخانه کوه ویلسون مجموعهای از نشانگرهای فاصله را که نسخه اولیهای برای نردبان فاصله کیهانی بودند، ایجاد کرد. با این روش او میتوانست فاصله کهکشانهایی را که انتقال به سرخ آنها پیشتر عمدتاً توسط اسلیفر اندازهگیری شده بود، تخمین بزند. در سال ۱۹۲۹ او کشف نمود که بین فاصله و سرعت عقبنشینی این کهکشانها رابطهای وجود دارد که امروزه به نام قانون هابل شناخته میشود.[18][48] لومتر قبلاً نشان داده بود که این موضوع با استفاده از اصل کیهانشناختی قابل پیشبینی است.[9]
در دهههای ۱۹۲۰ و ۱۹۳۰ تقریباً تمام کیهان شناسان برجسته نظریه حالت پایدار و جهان ابدی را ترجیح میدادند و گروهی نیز شکایت داشتند که ایده «آغاز زمان» که از نظریه مهبانگ نتیجهگیری میشود مفاهیم مذهبی را وارد فیزیک نمودهاست. این اعتراض بعدها نیز توسط طرفداران نظریه حالت پایدار دوباره مطرح شد.[49] این واقعیت که ژرژ لومتر، بنیانگذار اصلی نظریه مهبانگ، یک کشیش کاتولیک بود، نیز این شبهه را تقویت مینمود.[50] آرتور ادینگتون با ارسطو همرای بود که جهان نقطه آغازی در زمان ندارد و ماده ابدی است. نقطه آغازی برای زمان در نظر وی غیرقابل قبول مینمود.[51][52]
اما لومتر بر این باور بود که
اگر دنیا از یک کوانتوم تنها شروع شده باشد مفاهیم زمان و فضا نمیتوانند در آغاز معنادار باشند؛ آنها تنها زمانی میتوانند معنی پیدا کنند که کوانتوم اولیه به تعداد کافی از کوانتاها تقسیم شده باشد. اگر این پیشنهاد درست باشد، آغاز دنیا کمی قبل از شروع زمان و مکان رخ دادهاست.[53]
در خلال دهه ۱۹۳۰ نظریههای دیگری همچون کیهانشناسیهای غیر استاندارد برای توضیح مشاهدات هابل مطرح شدند که از جمله این مدلها میتوان به مدل میلن (به انگلیسی: Milne Model)[54] ، مدل چرخهای (که در ابتدا توسط فریدمان مطرح شد اما توسط انیشتین و ریچارد تولمان حمایت شد)[55] و فرضیه نور خسته فریتز زوئیکی اشاره کرد.[56]
پس از جنگ جهانی دوم دو مدل متمایز وجود داشت. یکی مدل حالت پایدار فرد هویل بود که بنابراین نظریه طی انبساط گیتی ماده جدید بهوجود میآید. در این مدل گیتی تقریباً در همه زمانها یکسان است.[57] مدل دیگر نظریه مهبانگ ژرژ لومتر بود که توسط جرج گاموف حمایت شد و توسعه یافت. گاموف فردی بود که هستهزایی مهبانگ را معرفی نمود[58] و همکاران او، رالف آشر آلفر و رابرت هرمان، تابش زمینه کیهانی را پیشبینی نمودند.[59] این هویل بود که واژه Big Bang را برای اشاره به نظریه لومتر به کار برد. او این واژه را در یک برنامه رادیویی بیبیسی در مارس ۱۹۴۹ در حالیکه از نظریه لومتر به عنوان «این ایده انفجار بزرگ» (به انگلیسی: this big bang idea) یاد میکرد ابداع نمود.[60] تا مدتی حمایت دانشمندان بین این دو نظریه تقسیم شده بود اما در نهایت شواهد تجربی رأی به برتری نظریه مهبانگ داد. کشف و تأیید تابش زمینه کیهانی در سال ۱۹۶۴[61] جایگاه نظریه مهبانگ را به عنوان بهترین نظریه در توضیح آغاز و تکامل کیهان مستحکم نمود. بخش بزرگی از تلاشهای امروز در زمینه کیهانشناسی صرف فهمیدن چگونگی شکلگیری کهکشانها در نظریه مهبانگ، درک فیزیک جهان در زمانهای قبل تر و قبل تر و هماهنگسازی مشاهدات با نظریهها میشود.
به دلیل پیشرفت در فناوری تلسکوپها و تحلیل دادههای ماهوارههایی همچون کاوشگر زمینه کیهان[62] ، تلسکوپ فضایی هابل و دبلیومپ از اواخر دهه ۱۹۹۰ به بعد پیشرفتهای قابل توجهی در کیهانشناسی مهبانگ حاصل شدهاست.[63] اکنون کیهان شناسان اندازهگیریهای نسبتاً دقیقی از بسیاری از پارامترهای مدل مهبانگ در دست دارند و متوجه این واقعیت غیرمنتظره شدهاند که سرعت انبساط جهان رو به افزایش است.
شواهد تجربی نظریه مهبانگ
" آنقدر دادههای تاییدکننده نظریه مهبانگ در حوزههای گوناگون زیاد است که نمیتوان به سادگی ویژگیهای اصلیاش را رد نمود."
قدیمیترین و مستقیمترین شواهد تجربی در تأیید نظریه مهبانگ عبارتند از: انبساط گیتی بر پایه قانون هابل (با مشاهده پدیده انتقال به سرخ در کهکشانها)، کشف و اندازهگیری تابش زمینه کیهانی و فراوانی نسبی عناصر سبک که در جریان هسته زایی مهبانگ تولید شدهاند. مشاهدات مربوط به شکلگیری و تکامل کهکشانها و نحوه توزیع ساختارهای بزرگ مقیاس در گیتی نیز شواهد تازهتری هستند که به این گروه اضافه شدند.[65] از این موارد به عنوان چهار ستون نظریه مهبانگ نیز یاد شدهاست.[66] در مدلهای نوین دقیق مهبانگ، پدیدههای فیزیکی دور از ذهنی مطرح میشوند که نه در هیچ آزمایشی در روی زمین تجربه شدهاند و نه در مدل استاندارد فیزیک ذرات راه پیدا کردهاند. از جمله این پدیدهها میتوان به ماده تاریک اشاره کرد که اکنون موضوع فعالترین پژوهشهای آزمایشگاهی است.[67] از سایر موارد میتوان به مسئله هاله تیزهای و مسئله کهکشان کوتوله در ارتباط با ماده تاریک سرد اشاره نمود. انرژی تاریک نیز از موضوعاتی است که کنجکاوی دانشمندان را بسیار برانگیختهاست اما مشخص نیست که کشف مستقیم آن امکانپذیر باشد.[68] تورم کیهانی و باریونزایی نیز همچنان به عنوان ویژگیهای ابهامآمیز مدلهای نوین مهبانگ باقی ماندهاند و هنوز توضیح کمیتی قابل قبولی برای آنها پیدا نشدهاست. اینها تا امروز جز مسائل حلنشده فیزیک باقی ماندهاند.
قانون هابل و انبساط فضا
مشاهده کهکشانهای دوردست و اختروشها نشان داد است که این اجسام دچار پدیده انتقال به سرخ میشوند-نور منتشر این اجسام به طول موجهای بلندتر منتقل شدهاست-. این پدیده را میتوان با تطبیق طیف بسامدی یک جسم با الگوی طیفبینی خطوط گسیلی و جذبی طیف اتمهای عناصری که با نور برهمکنش دارند، مشاهده نمود. این انتقال به سرخها به شکل یکنواختی همسانگرد هستند و بهطور مساوی بین همه اجسام در همه جهتها توزیع شدهاند. اگر انتقال به سرخ را به عنوان انتقال دوپلری تفسیر کنیم، سرعت عقبنشینی این اجسام قابل محاسبه است. برای برخی از کهکشانها میتوان فاصله را از راه نردبان فاصله کیهانی تخمین زد. اگر نمودار سرعت عقبنشینی نسبت به فاصله را رسم کنیم، یک رابطه خطی در آن قابل تشخیص است که به نام قانون هابل مشهور است:[18]
v = H۰D
که
- v: سرعت عقبنشینی کهکشان یا هر جسم دیگر
- D: طول همراه(Comoving) تا جسم مورد نظر
- H۰: ثابت هابل است که بنا بر اندازهگیریهای دبلیومپ مقداری برابر با ۷۰٫۴ +۱٫۳−۱٫۴ کیلومتر/ثانیه/مگا پارسک دارد.[34]
قانون هابل را به دو گونه ممکن میتوان توجیه نمود. یا ما در مرکز انفجار کهکشانها هستیم - که با پذیرش اصل کوپرنیکی این توجیه پذیرفتنی نیست - یا اینکه جهان در همه جا به صورت یکنواخت منبسط میشود. پیش از اینکه هابل در سال ۱۹۲۹ این مشاهدات و تحلیل را انجام دهد، انبساط جهان توسط فریدمان در سال ۱۹۲۲[45] و لومتر در سال ۱۹۲۷[46] با استفاده از نسبیت عام پیشبینی شده بود و کماکان سنگ بنای نظریه مهبانگ فریدمان-لومتر-رابرتسون-واکر بهشمار میرود
در این نظریه رابطه v = HD باید همیشه برقرار باشد. همچنانکه جهان منبسط میشود مقادیر v, Hو D نیز تغییر میکند (به همین دلیل ثابت هابل را با H۰ نمایش میدهیم که به معنی تابت هابل در زمان کنونی است) برای فواصلی که از اندازه جهان قابل مشاهده بسیار کوچکتر هستند میتوان انتقال سرخ را به عنوان اثر دوپلر در نظر گرفت که به دلیل سرعت رو به عقب اجسام پدید میآید. اما انتقال به سرخ در واقع اثر دوپلر نیست بلکه ناشی از انبساط جهان در فاصله زمانی بین انتشار نور و زمانی است که نور به ما میرسد.[69]
انبساط متریک جهان را میتوان توسط مشاهدات مستقیم اصل کیهان شناختی و اصل کوپرنیکی نمایش داد که وقتی با قانون هابل در کنار هم قرار بگیرند هیچ توضیح دیگری جز انبساط جهان قابل تصور نیست. انتقال به سرخهای نجومی بسیار همگن و همسانگرد هستند[18] و این موضوع تأییدکننده اصل کیهان شناختی است که میگوید جهان در تمام جهتها یکسان به نظر میرسد. اگر انتقال به سرخها ناشی از انفجار از یک مرکز انفجار در نقطهای دور از ما بودند، در جهات مختلف یکسان نبودند.
اندازهگیری آثار تابش زمینه کیهانی بر سامانههای اخترفیزیکی دوردست در سال ۲۰۰۰ اصل کوپرنیکی را اثبات کرد که بیان میکند در مقیاسهای کیهانی، زمین در موقعیتی مرکزی قرار ندارد.[70] تابش مهبانگ در زمان گذشته گرم تر بودهاست و سرد شدن یکنواخت تابش زمینه کیهانی تنها در حالتی قابل توضیح است که جهان انبساط یکنواختی داشته باشد و احتمال اینکه ما در یگانه مرکز انفجار باشیم را از بین میبرد.
تابش زمینه کیهانی
در سال ۱۹۶۴ آرنو آلان پنزیاس و رابرت وودرو ویلسون با خوش شانسی تابش زمینه کیهانی را کشف کردند، یک سیگنال چند جهته در باند ریزموج.[61] آنها در حالیکه میکوشیدند تا سیگنالهای مزاحم پس زمینه را از سیگنالهای دریافتی آنتن رادیویی خود حذف کنند به این کشف دست یافتند. آنها قادر به حذف این نویز نبودند و متوجه شدند که این نویز در تمام جهات به صورت یکسان دریافت میشود. این بدان معنی بود که این سیگنال میبایستی از ورای کهکشان آمده باشد، در غیر این صورت نمیتوانست در تمام جهات آسمان به صورت یکسان دریافت شود. همگرایی شدید این سیگنال نیز نشان میداد که منبع این سیگنال در فاصلهٔ دوری از ما قرار دارد و در نتیجه این سیگنال در اوایل عمر جهان ایجاد شدهاست و همچنین منبع قدرتمندی دارد که ما امروزه قادر به دریافت این سیگنال هستیم.
وجود این تابش پیش از کشف آن توسط نظریه مهبانگ پیشبینی شده بود و ویژگیهای این تابش به خوبی با آنچه در موردش پیشبینی شده بود، همخوانی داشت: تابش در همه جهات با طیف یک جسم سیاه ایدئال همخوانی داشت؛ این طیف بر اثر انبساط جهان دچار انتقال سرخ شده و دمای کنونی آن در حدود ۲٫۷۲۵ درجه کلوین است. این موضوع موازنه شواهد تجربی را به نفع نظریه مهبانگ تغییر داد و در سال ۱۹۷۸ برای این کشف به پنزیاس و ویلسن جایزه نوبل اهدا شد.
در سال ۱۹۸۹ ناسا ماهواره کاوشگر زمینه کیهان(COBE) را به فضا فرستاد. یافتههای این ماهواره با پیشبینیها در مورد تابش زمینه کیهانی همخوانی داشت. این ماهواره دمای پس زمینه این تابش را ۲٫۷۲۶ کلوین اندازهگیری نمود (که البته در اندازهگیریهای جدیدتر این مقدار به ۲٫۷۲۵ تغییر یافتهاست) و همچنین برای نخستین بار شواهدی مبنی بر وجود نوسانات (ناهمسانگردی) در تابش زمینه کیهانی در مرتبه یک قسمت در ۱۰۵ ارائه داد.[62] جان ماتر و جرج اسموت به عنوان پیشروان این پژوهش، موفق به کسب جایزه نوبل شدند. در خلال سالهای اخیر آزمایشهای زمینی و بالنی متعددی، ناهمسانگردیهای تابش زمینه کیهانی را مورد پژوهش قرار دادهاند. در سال ۲۰۰۰–۲۰۰۱ از آزمایشهای متعددی که از مهمترینشان میتوان به آزمایش بومرنگ اشاره نمود، و با اندازهگیری اندازه زاویهای ناهمسانگردیها، این نتیجه حاصل شد که شکل فضایی جهان تخت است.[74][75][76]
در اوایل سال ۲۰۰۳ نخستین نتایج کاوشگر ناهمسانگردی ریزموجی ویلکینسون منتشر شد و مقادیر دقیقتری برای برخی از پارامترهای کیهانی بهدستآمد. این نتایج باعث رد چندین مورد از مدلهای خاص تورم کیهانی شد اما بهطور کلی با نظریه تورم کیهانی سازگار است.[63] ماهواره پلانک نیز در سال ۲۰۰۹ به فضا پرتاب شد و آزمایشهای زمینی و بالنی دیگری نیز در مورد تابش زمینه کیهانی در جریان است.
فراوانی عناصر نخستین
با استفاده از نظریه مهبانگ میتوان میزان تمرکز هلیم-۴، هلیم-۳، دوتریم و لیتیم-۷ در جهان را نسبت به مقدار هیدروژن معمولی به دست آورد.[77] فراوانی نسبی این عناصر به مقدار نسبت فوتونها به باریونها بستگی دارد. این مقدار را میتوان به صورت جداگانه از جزئیات ساختاری نوسانات تابش زمینه کیهانی محاسبه نمود. مقادیر تقریبی پیشبینیشده برای فراوانی نسبی عناصر عبارتند از:
حدود ۰٫۲۵ برای نسبت 4
He/H،
حدود ۱۰−۳ برای نسبت 2
H/H، حدود ۱۰−۴ برای 3
He/H و حدود ۱۰−۹ برای 7
Li/H.[77]
تمام مقادیر اندازهگیری شده، حداقل بهطور تقریبی با مقادیر پیشبینیشده از طریق نسبت باریون به فوتون همخوانی دارند. این همخوانی به ویژه در مورد دوتریم با دقت بالایی صادق است. برای نسبت 4
He مقادیر اندازهگیری شده و پیشبینیشده نزدیک به هماند اما اختلافی نیز وجود دارد و برای نسبت 7
Li با فاکتور ۲ اختلاف دارد. در دو مورد آخر خطاهای سیستماتیک اندازهگیری نیز در اختلاف مشاهدهشده دخیلاند. در هر صورت همخوانی کلی فراوانیهای نسبی پیشبینیشده توسط نظریه هستهزایی مهبانگ و مقادیر اندازهگیریشده، شاهدی قوی برای درستی نظریه مهبانگ بهشمار میرود و این نظریه تنها توضیح ممکن برای فراوانی عناصر سبک است و تقریباً غیرممکن است که بتوان مهبانگ را طوری تنظیم نمود که مقداری خیلی بیشتر یا کمتر از ۲۰–۳۰٪ هلیم تولید کند.[78]
در واقع به جز مهبانگ، هیچ دلیل واضح دیگری وجود ندارد که در جهان جوان نخستین (یعنی پیش از شکلگیری ستارهها) مقدار هلیم از دوتریم بیشتر باشد یا میزان دوتریم از 3
He بیشتر باشد و نسبتها نیز ثابت باشد.[79]:۱۸۲–۱۸۵
توزیع و تکامل کهکشانها
مشاهدات مربوط به شکل و توزیع کهکشانها و اختروشها با پیشبینیهای نظریه مهبانگ همخوانی دارند. ترکیبی از مشاهدات و نظریات چنین پیشنهاد میکند که نخستین اختروشها و کهکشانها در حدود یک میلیارد سال پس از مهبانگ بهوجود آمدهاند و از آن موقع تاکنون ساختارهای بزرگتری مانند خوشههای کهکشانی و اَبَر خوشهها در حال شکلگیری بودهاند. جمعیتهای ستارهای در حال تکامل و پیرتر شدن بودهاند به گونهای که کهکشانهای دورتر (که به دلیل فاصلهشان به همان شکلی که در اوایل جهان داشتند، دیده میشوند) بسیار متفاوت از کهکشانهای نزدیک به نظر میرسند. علاوه بر این، میان کهکشانهایی که به نسبت زمان کمتری از تشکیلشان میگذرد، با کهکشانهایی که تقریباً در همان فاصله از ما قرار دارند اما اندکی پس از مهبانگ بهوجود آمدهاند، تفاوت مشخصی وجود دارد. اینها همه شواهدی قوی علیه نظریه حالت پایدار هستند. مشاهدات زایش ستارگان، توزیع کهکشانها و اختروشها و ساختارهای بزرگتر، با نتایج شبیهسازیهای مبتنی بر نظریه مهبانگ همخوانی کامل دارند و کمک میکنند که جزئیات بیشتری از این نظریه به دست آید.[80][81]
ابرهای گازی نخستین
در سال ۲۰۱۱ فضانوردان از طریق بررسی خطوط جذبی طیف اختروشهای دوردست، چیزی را کشف کردند که به گمان آنها ابرهای دست نخوردهای از گازهای نخستین بود. پیش از این تمام اجسام نجومی شناختهشده حاوی عناصر سنگینتری بودند که در ستارگان بهوجود آمدهاند. این دو ابر گازی هیچ عنصری سنگینتر از هیدروژن و دوتریم نداشتند.[82][83] از آنجا که ابرهای گازی شامل عنصر سنگینی نیستند، احتمالاً میبایست در نخستین دقایق پس از مهبانگ و در حین هستهزایی مهبانگ شکلگرفته باشند. ترکیب آنها با ترکیب پیشبینیشده توسط نظریه هستهزایی مهبانگ همخوانی داردو این شاهدی مستقیم برای این موضوع ارائه میدهد که در دورهای از عمر گیتی، بیشتر ماده معمولی موجود، به شکل ابرهای گازی متشکل از هیدروژن خنثی بودهاست.
سایر شواهد
مقدار تخمینزدهشده برای سن گیتی بر اساس انبساط هابل و تابش زمینه کیهانی، اکنون به خوبی با تخمینهای دیگری که با استفاده از سن پیرترین ستارگان به دست میآیند، همخوانی دارند. چه آن مقادیر تخمینی که از طریق استفاده از نظریه تکامل ستارگان در مورد خوشههای ستارهای کروی، به دست میآیند، و چه مقادیری که از طریق تاریخنگاری رادیومتریک ستارگان منفرد جمعیت II به دست میآیند.[84] این پیشبینی که دمای تابش زمینه کیهانی در گذشته بالاتر بودهاست توسط مشاهدات تجربی خطوط جذب دماهای بسیار پایین در ابرهای گازی در انتقال به سرخ بالا اثبات شدهاست.[85] این پیشبینی همچنین بیانگر آن است که دامنه اثر سونیائف زلدوویچ در خوشههای کهکشانی مستقیماً به انتقال به سرخ وابسته نیست. شواهد درستی این موضوع را بهطور تقریبی نشان دادهاند اما این اثر به ویژگیهای خوشه بستگی دارد و در طول زمان کیهانی تغییر میکند و اندازهگیری دقیق را مشکل میسازند.[86][87] در ۱۷ مارس ۲۰۱۴، فضانوردان مرکز اخترفیزیک هاروارد-اسمیتسونین، اعلام نمودند که امواج گرانشی اولیه را ردیابی کردهاند، که اگر به تأیید برسد، میتواند مدرکی محکم برای تورم کیهانی و مهبانگ باشد.[14][15][16][17] هرچند که در ۱۹ ژوئن ۲۰۱۴ گزارشهایی مبنی بر کاهش اطمینان نسبت به درستی این کشف منتشر شد[88][89][90] و در ۱۹ سپتامبر ۲۰۱۴ این اطمینان حتی کمتر هم شد.[91][92]
مسائل و مشکلات مرتبط در فیزیک
مانند هر نظریه دیگری، با توسعه نظریه مهبانگ، معماها و مسائلی سربرآوردهاند. برای برخی پاسخهایی ارائه شده و تعدادی نیز بدون پاسخ ماندهاند. برخی پاسخهای پیشنهاد شده برای مسائل مدل مهبانگ، خود معماهای جدیدی بهوجودآوردهاند؛ مثلاً مسئله افق، مسئله تک قطبی مغناطیسی و مسئله تخت بودن عموماً توسط نظریه تورمی حل میشوند؛ اما جزئیات جهان تورمی هنوز حلنشده باقی ماندهاند و هنوز نظریات جایگزین نظریه تورمی در متون علمی طرفدار دارند.[93][94] آنچه در ادامه در این بخش آمده، جنبههای رازآلود نظریه مهبانگ است که همچنان تحت بررسی شدید از جانب کیهانشناسان و اخترفیزیکدانان هستند.
عدم تقارن باریون
هنوز به خوبی نمیدانیم که چرا در جهان میزان ماده از پادماده (ضدماده) بیشتر است.[95] تصور کلی بر این است که وقتی جهان جوان و بسیار داغ بود در یک تعادل آماری بود و تعداد باریونها و پادباریونها برابر بود. این در حالی است که مشاهدات نشان میدهند که جهان حتی در دورترین نقاط آن تقریباً بهطور کامل از ماده ساختهشدهاست. اینطور پنداشته میشود که فرایندی ناشناخته به نام باریونزایی مسئول این عدم تقارن است. برای رخ دادن پدیده باریونزایی، باید سه شرط ساخاروف برقرار باشد:
- پایستگی عدد باریونی نقض شود
- تقارن سی و تقارن سی پی نقض شود؛ و
- جهان از شرایط تعادل ترمودینامیکی فاصله بگیرد[96]
همه این شرایط در مدل استاندارد رخ میدهند اما اثر آنها آنقدر زیاد نیست که عدم تقارن باریونی کنونی را توجیه کند.
انرژی تاریک
اندازهگیریهای رابطه انتقال سرخ-قدر ظاهری ابرنواخترهای نوع Ia نشان میدهد که انبساط جهان، در زمانی که جهان نیمی از سن کنونیاش را داشته، شتابدار شدهاست. بنا بر نظریه نسبیت عام برای اینکه چنین شتابی امکانپذیر باشد باید بیشتر انرژی جهان از مؤلفهای با فشار منفی بالا تشکیل شده باشد که این مؤلفه را انرژی تاریک نامیدهاند.[9] انرژی تاریک اگرچه هنوز در حد گمانهزنی است، اما مسائل متعددی را حل میکند. اندازهگیریهای تابش زمینه کیهانی نشان میدهند که جهان از نظر شکل فضایی تقریباً تخت است و بنابراین طبق نظریه نسبیت عام باید میزان چگالی جرم/انرژی آن تقریباً با مقدار چگالی بحرانی برابر باشد. چگالی جرم جهان را میتوان از خوشهبندیهای گرانشی آن به دست آورد و اندازهگیریها نشان میدهد این مقدار تنها ۳۰٪ چگالی بحرانی است.[9] از آنجا که انرژی تاریک بنا بر نظریات موجود، به شیوه متعارف خوشهبندی نمیشود، بهترین توضیح برای چگالی انرژی گمشده جهان است. انرژی تاریک همچنین در توضیح دو روش اندازهگیری هندسی خمش کلی جهان از طریق بسامد لنزهای گرانشی یا با استفاده از ساختار بزرگ مقیاس جهان به عنوان یک خطکش کیهانی، سودمند است.
اینگونه پنداشته میشود که فشار منفی از ویژگیهای انرژی خلاء است، اما ماهیت دقیق و وجود انرژی تاریک همچنان به عنوان یکی از رازهای مهبانگ باقی ماندهاست. نتایج منتشر شده توسط تیم دبلیومپ در سال ۲۰۰۸، جهانی را توصیف میکنند که شامل ۷۳٪ انرژی تاریک، ۲۳٪ ماده تاریک، ۴٫۶٪ ماده و معمولی و کمتر از ۱٪ نوترینو است.[34] بنا بر نظریات، چگالی انرژی در ماده با انبساط کیهان کاهش مییابد اما چگالی انرژی تاریک ثابت است (یا تقریباً ثابت است). بنابراین در گذشته ماده بخش بزرگتری از کل انرژی جهان را در مقایسه با زمان حال تشکیل میداد و اما همچنانکه سلطه انرژی تاریک در آینده دور افزایش مییابد، سهم ماده در انرژی کل جهان کاهش خواهد یافت.
انرژی تاریک، به عنوان یکی از مؤلفههای تشکیلدهنده جهان توسط نظریهپردازان در چندین نظریه رقیب توضیح داده شدهاست؛ مثلاً توسط ثابت کیهانی اینشتین یا نظریههای بیگانهتری مانند اثیر یا انواع دیگری از تعریف گرانش.[97] مسئله ثابت کیهانی که گاهی از آن به شرمآورترین مسئله در فیزیک یاد میشود، حاصل اختلاف میان چگالی انرژی اندازهگیریشده انرژی تاریک با مقدار پیشبینی شده آن توسط یکاهای پلانک است.[98]
ماده تاریک
در دهه های۱۹۷۰ و ۱۹۸۰ مشاهدات مختلفی نشان داد که ماده کافی در جهان برای توجیه قدرت نیروهای گرانشی بین کهکشانها و درون آنها وجود ندارد. این مشاهدات به این ایده منجر شد که ۹۰٪ ماده در جهان ماده تاریک است که نوری از آن منتشر نمیگردد و برهمکنشی با ماده باریونی معمولی ندارد. به علاوه، این تصور که گیتی بیشتر از ماده معمولی تشکیل شده باشد، منجر به پیشبینیهایی میشد که به شدت با مشاهدات تجربی در تناقض بودند. به عنوان نمونه در جهان امروز میزان دوتریم بسیار کمتری از آن است که بدون وجود ماده تاریک قابل توجیه باشد. اگرچه وجود ماده تاریک همواره محل بحث و اختلاف نظر بودهاست، اما مشاهدات مختلفی دلالت بر وجود آن دارند: ناهمسانگردیها در تابش زمینه کیهانی، پراکندگی سرعت گروهها و خوشههای کهکشانی، توزیع ساختار بزرگ مقیاس، مطالعات در زمینه همگرایی گرانشی و اندازهگیریهای پرتو ایکس خوشههای کهکشانی.[99]
تنها گواه غیر مستقیم برای وجود ماده تاریک، تأثیر گرانشی آن بر ماده معمولی است و تاکنون ماده تاریکی در آزمایشگاهها مشاهدهنشدهاست. در فیزیک ذرات، نامزدهای متعددی برای ماده تاریک پیشنهاد شدهاست و پروژههای متعددی برای ردیابی مستقیم آن در حال انجاماند.[100]
علاوه بر این، مسائل حلنشدهای در مورد مدل پذیرفتهشده ماده تاریک سرد نیز وجود دارند که از جمله آنها میتوان به مسئله کهکشان کوتوله[101] و یا مسئله هاله تیزهای اشاره نمود.[102] نظریههای جایگزینی نیز پیشنهاد شدهاند که نیازی به میزان انبوهی از ماده کشفنشده ندارند، بلکه در عوض آنها قوانین گرانش نیوتن و اینشتین را تغییر میدهند، اما هیچیک از این نظریهها به اندازه مدل ماده تاریک سرد در توضیح مشاهدات کنونی موفق نبودهاند.[103]
مسئله افق
این مسئله برآمده از این اصل پذیرفتهشدهاست که در جهان اطلاعات نمیتواند باسرعتی بیشتر از سرعت نور منتقل شود. در جهانی با سن متناهی، این اصل حد بیشینهای برای میزان فاصله ممکن میان دو ناحیه از جهان که با یکدیگر رابطه سببی دارند، ایجاد میکند(افق ذره).[104] همسانگردی و یکنواختی دمای تابش زمینه کیهانی در سراسر جهان سبب برانگیختهشدن پرسشهایی در ارتباط با این اصل میشود: اگر جهان تا دوران آخرین پخش همواره از تابش یا ماده تشکیل شدهباشد، افق ذره در آن زمان میبایست متناظر با ۲ درجه در آسمان باشد و برای اینکه نواحی گستردهتر از این بتوانند با هم تبادل اطلاعات کنند و همدما شوند، هیچ مکانیزمی وجود نداشتهاست[79]:۱۹۱–۲۰۲ و نمیتوان توضیح داد که چرا تابش زمینه کیهانی در سراسر جهان دمای یکنواختی دارد.
نظریه تورم کیهانی پاسخی برای این تناقض ظاهری پیشنهاد میکند؛ بنابراین نظریه در نخستین لحظات پس از مهبانگ (پیش از باریونزایی)، سراسر جهان را یک میدان انرژی همسانگرد نردهای (اسکالر) و همگن فراگرفتهاست و باعث تورم ناگهانی جهان شدهاست. در حین دوره تورمی، جهان دچار انبساطی نمایی شدهاست که طی آن افق ذره با سرعتی بسیار بیشتر از آنچه پیشتر تصور میشد، گسترش یافتهاست. بدین ترتیب حتی نواحی که در در دو انتهای مخالف جهان قابل مشاهده قرار دارند نیز در افق ذره یکدیگر قرار میگیرند. همسانگردی مشاهده شده در تابش زمینه کیهانی نیز برآمده از این واقعیت است که نقاط این ناحیه بزرگتر پیش از شروع تورم کیهانی در ارتباط سببی با یکدیگر بودهاند.[24]:۱۸۰–۱۸۶
اصل عدم قطعیت هایزنبرگ پیشبینی میکند که در حین دوره تورمی نوسانات گرمایی کوانتومی وجود داشتهاست که با تورم گیتی با همین مقیاس بزرگ شدهاند. این نوسانات بذر تمام ساختارهای کنونی مشاهدهشده در جهان هستند.[79]:۲۰۷ نظریه تورمی پیشبینی میکند که نوسانات نخستین تقریباً مستقل از مقیاس و گاوسی بودهاند که این پیشبینی توسط اندازهگیریهای تابش زمینه کیهانی با دقت تأیید شدهاست.[105]:sec 6
اگر تورم کیهانی اتفاق افتاده باشد، انبساط نمایی نواحی بزرگ فضا را بسیار دورتر از افق قابل مشاهده ما راندهاست.
یک مسئله مرتبط با این مسئله کلاسیک افق، ناشی از این واقعیت است که در مدلهای تورمی کنونی، تورم کیهانی پیش از وقوع تقارنشکنی الکتروضعیف متوقف میشود؛ بنابراین تورم کیهانی نمیتوانسته مانع از گسستگی در خلأ الکتروضعیف در مقیاس بزرگ، شدهباشد، زیرا نواحی بسیار دور از هم در جهان قابل مشاهده وقتی دوره الکتروضعیف به پایان رسید، نمیتوانستهاند با هم رابطه علت و معلولی داشته باشند.[106]
مسئله تک قطبی مغناطیسی
مسئله تک قطبی مغناطیسی در اواخر دهه ۱۹۷۰ مطرح شد. نظریه وحدت بزرگ نقایص توپولوژیکی را در فضا پیشبینی میکند که میتواند در شکل تک قطبی مغناطیسی تجلی یابد. این اجسام میتوانستند به سادگی در جهان داغ اولیه بهوجود آیند و باعث شوند چگالی بسیار بیشتر از مقدار اندازهگیریشده باشد اما تاکنون جستجوها برای تک قطبی مغناطیسی بینتیجه ماندهاست. این مسئله نیز با استفاده از نظریه تورم کیهانی اینگونه پاسخ داده شدهاست که تورم کیهانی همانگونه که شکل جهان را تخت کرد همه نقایص نقطهای جهان قابل مشاهده را نیز برطرف نمود.[107]
مسئله تخت بودن جهان
مسئله تخت بودن (یا مسئله پیری) با متریک فریدمان-لومتر-رابرتسون-واکر مرتبط است.[104] خمش فضایی جهان بسته به مقدار چگالی انرژی کل آن ممکن است منفی، مثبت یا صفر باشد. اگر چگالی انرژی آن کمتر از چگالی بحرانی باشد خمش منفی، اگر بزرگتر باشد خمش مثبت و اگر برابر با چگالی بحرانی باشد خمش صفر و فضا تخت خواهد بود. مشکل اینجاست که با وجود اینکه هر اختلاف اندک با مقدار چگالی بحرانی در طول زمان افزایش مییابد، شکل جهان همچنان بسیار نزدیک به تخت است.[notes 2] با توجه به اینکه یک مقیاس زمانی طبیعی برای تغییر در شکل تخت، میتواند زمان پلانک، ۱۰−۴۳ باشد،[4] این واقعیت که جهان پس از میلیاردها سال نه دچار مرگ گرمایی و نه مهرمب شدهاست، به توضیح نیاز دارد؛ مثلاً حتی در زمانی که سن جهان چند دقیقه بود، اختلاف چگالی جهان با چگالی بحرانی میبایست به اندازه یک در ۱۰۱۴ باشد و در غیر اینصورت جهان به صورتی که امروز دیده میشود، وجود نداشت.[108]
آینده جهان بنا بر نظریه مهبانگ
پیش از مشاهدات مربوط به وجود انرژی تاریک، کیهان شناسان دو سناریوی متفاوت برای آینده جهان متصور بودند. اگر چگالی جرم جهان بیشتر از مقدار بحرانی بود، جهان به اندازه بیشینهای رسیده و شروع به فروپاشی میکرد. جهان چگالتر و داغ تر میشد تا سر انجام به وضعیتی مشابه وضعیتی که از آن شروع شدهاست برسد. به این فرایند مهرمب (به انگلیسی: Big Crunch) میگویند.[109] در حالت دیگر اگر چگالی جهان با چگالی بحرانی برابر یا از آن کمتر بود انبساط کندتر شده اما هرگز متوقف نخواهد شد. با مصرف شدن تمام گازهای میان ستارهای درون کهکشانها، زایش ستارگان متوقف میشود و ستارهها کاملاً میسوزند و از خود کوتولههای سفید، ستارههای نوترونی و سیاهچاله به جای میگذارند. در روندی بسیار کند و تدریجی این اجسام با هم برخورد میکنند و سیاهچالههای بزرگتر و بزرگتری پدید میآید و دمای متوسط جهان به سمت صفر مطلق میل خواهد کرد - انجماد بزرگ.[110] علاوه بر این اگر پروتون ناپایدار باشد ماده باریونی ناپدید خواهد شد و تنها تابش و سیاهچاله باقی میماند. در نهایت سیاه چالهها نیز بر اثر انتشار تابش هاوکینگ تبخیر خواهند شد. انتروپی جهان تا نقطهای افزایش خواهد یافت که هیچ شکل سازمان دیدهای از انرژی را نمیتوان از آن استخراج کرد. این سناریو را مرگ گرمایی جهان مینامند.[111]:sec VI.D مشاهدات جدید مبنی بر شتابدار بودن انبساط جهان، ایجاب میکند که بخشهای بیشتر و بیشتری از جهانی که هماکنون قابل مشاهده است از افق رویداد ما فراتر میروند و ارتباط ما با آن بخشها قطع میشود. سرانجام نهایی نامعلوم است. مدل لامبدا-سی دی ام (به انگلیسی: Lambda-CDM model(ΛCDM)) انرژی تاریک را به صورت یک ثابت کیهانشناسی در نظر میگیرد. این نظریه پیشنهاد میکند که تنها سامانههای گرانشی مانند کهکشانها منسجم میمانند و در نهایت آنها نیز بر اثر انبساط و سرد شدن جهان دچار مرگ گرمایی میشوند. سایر نظریات مطرح شده برای انرژی تاریک، مانند نظریه انرژیهای فانتومی پیشبینی میکنند که در نهایت خوشههای کهکشانی، سیارهها، هسته و خود ماده بر اثر انبساط روزافزون، به سرنوشت مهگسست دچار میشوند و از هم گسیخته میشوند.[112]
گمانهزنیهای فراتر از مهبانگ
اگرچه نظریه مهبانگ نظریهای پذیرفتهشده در دانش کیهانشناسی فیزیکی امروزی است، اما تغییر آن در آینده دور از ذهن نیست. نظریه مهبانگ برپایه معادلات کلاسیک نسبیت عام، وجود یک نقطه تکینگی گرانشی را در مبدأ زمان پیشبینی میکند، این نقطه با چگالی بینهایت از نظر فیزیکی امکانپذیر نیست. البته میدانیم که این معادلات تا پیش از فرارسیدن دوره پلانک و سرد شدن جهان تا دمای پلانک، قابل استفاده نیستند.
یکی از راههای پیشنهاد شده برای اجتناب از این تکینگی، فرمولبندی مناسبی از یک نظریه گرانش کوانتومی است.[113]
اینکه چه چیزی ممکن است سبب بهوجودآمدن این نقطه تکینگی شده یا اینکه چگونه و چرا آغاز شده، هنوز نادانسته ماندهاست. اگرچه در شاخه کیهانزایی، گمانهزنیهای متعددی در این زمینه صورت گرفتهاست.
برخی از این گمانهزنیها که البته همگی شامل فرضیههای آزمودهنشدهاند، عبارتند از:
- مدلهایی که شامل شرط بدون مرز هارتل-هاوکینگ هستند که در آن کل فضازمان متناهی است. مهبانگ نمایانگر سرحد زمان است اما بدون تکینگی.[114]
- مدل مهبانگ شبکهای بیان میکند که جهان در لحظه مهبانگ، شبکهای نامتناهی از فرمیونها بودهاست که سراسر دامنه بنیادی را فراگرفته بوده و به آن تقارن چرخشی، انتقالی و پیمانهای میبخشیدهاست. این تقارن بالاترین سطح تقارن ممکن است و در نتیجه پایینترین میزان انتروپی ممکن را دارد.[115]
- مدلهای کیهانشناسی غشایی که در آنها تورم کیهانی ناشی از جابجایی غشاها در نظریه ریسمان است؛ مدل پیش-مهبانگ؛ مدل اکپیروتیک که در آن مهبانگ ناشی از برخورد غشاهاست؛ و مدل چرخهای که تغییریافته مدل اکپیروتیک است که در آن برخوردها به شکل تناوبی تکرار میشوند. درمدل آخری پیش از مهبانگ یک مهرمب روی میدهد و جهان به شکل متناوب و نامتناهی دچار این دو فرایند میشود.[116][117][118][119]
- تورم ابدی که در آن تورم کیهانی به صورت محلی در نقاط مختلف (به شکل تصادفی) پایان مییابد؛ و هر نقطه پایانی به یک جهان حبابی تبدیل میشود که بر اثر مهبانگ خود منبسط میشود.[120][121]
پیشنهادهایی که در دو دسته آخر قرار میگیرند مهبانگ را یا به صورت رویدادی در یک جهان بزرگتر و کهنتر ویا در یک چندجهانی میبینند.
برداشتهای دینی و فلسفی از مهبانگ
مهبانگ به عنوان نظریه توصیفگر مبدأ جهان، جهتگیریهای مذهبی و فلسفی بسیاری برانگیخته است.[122][123] و در نتیجه این نظریه به یکی از داغترین موضوعات در مباحثه میان دین و دانش بدل شدهاست.[124] برخی بر این باورند که نظریه مهبانگ نشانگر وجود خداست[125][126] و برخی نیز نشانههای آن را در کتب مقدس خود پیدا کردهاند،[127] در حالیکه برخی دیگر عقیده دارند که با نظریه مهبانگ وجود مفهوم یک پدیدآورنده غیرضروری است.[123][128]
مهبانگ به خودی خود یک نظریه فیزیکی است و تأیید درستی و نادرستی آن از طریق مشاهدات تجربی امکانپذیر است، اما از آنجا که در مورد مبدأ واقعیت حرف میزند، نتیجهگیریهای خداشناسانهای در ارتباط با مفهوم پیدایش از هیچ به دنبال دارد.[129][130][131] علاوه بر این بسیاری از خداشناسان و فیزیکدانان، نظریه مهبانگ را نشانهای از وجود خدا میدانند.[132][133] یکی از بحثهای پرطرفدار در مورد وجود خدا به نام «کیهانشناسی کلام» بر پایه نظریه مهبانگ استوار است.[134][135] در دهههای ۱۹۲۰ و ۱۹۳۰ تقریباً همه کیهانشناسان نامدار، مدل جهان پایدار را ترجیح میدادند و حتی بسیاری اعتراض داشتند که مفهوم آغاز زمان در نظریه مهبانگ، مفاهیم مذهبی را وارد فیزیک نمودهاست و با آن مخالفت میکردند[136] و این نتیجهگیری که جهان سرآغازی داشتهاست را رد میکردند.[124][137]
بسیاری از مفسرین مسلمان ادعا نمودهاند که در قرآن از مهبانگ یاد شدهاست.[138][139] به عنوان نمونه به آیه سی از سوره انبیاء اشاره شدهاست که ترجمه آن چنین است: «آیا کافران ندانستهاند که آسمانها و زمین بههم بسته و پیوسته بودند و ما آن دو را شکافته و از هم بازکردیم و هر چیز زندهای را از آب آفریدیم؟ پس آیا ایمان نمیآورند؟»[140][141][142] همچنین در آیه ۱۱ سوره فصلت، با اشاره به مراحل ابتدایی خلقت که بصورت دودی بودهاست، در تعامل مستقیم با نظریه ابرهای گازی نخستین است.[143]
پاپ پیوس دوازدهم در نشست افتتاحیه آکادمی علوم پونتیفیکال در ۲۲ نوامبر ۱۹۵۱ اعلام کرد که نظریه مهبانگ با مفهوم خلفت در آیین کاتولیک در تناقض نیست[144][145] اما پیروان باور آفرینشگرایی زمین جوان که تفسیر لغوی کتاب خلقت را قبول دارند، این نظریه را رد میکنند.
در میان پوراناهای هندو، جهان ابدی و بدون نقطه شروع زمان و به صورت چرخهای توصیف شدهاست تا اینکه بر اثر مهبانگ به وجود آمده باشد.[146][147] اما دانشنامه هندوئیسم بیان میکند که نظریه مهبانگ به بشریت یادآوری میکند که همه چیز از برهمن سرچشمه گرفتهاست که از یک اتم سبکتر و از بزرگترینها بزرگتر است.[148] ناسادیا سوکتا (سرود آفرینش) در ریگودا (۱۲۹:۱۰) عنوان میکند که جهان از یک نقطه (بیندو) توسط گرما ایجاد شدهاست.[149][150]
منابع
- Horizons of Cosmology [افق کیهانشناسی]. Templeton Press. 2009. p. 208.
|first1=
missing|last1=
in Authors list (help) - Big Bang: The Origin of the Universe [مهبانگ، سرآغاز گیتی]. Harper Perennial. 2005. p. 560.
|first1=
missing|last1=
in Authors list (help) - Wollack, E. J. (10 December 2010). "Cosmology: The Study of the Universe" [کیهانشناسی: مطالعه گیتی]. Universe 101: Big Bang Theory. NASA. Archived from the original on 14 May 2011. Retrieved 27 April 2011.
بخش دوم در مورد آزمونهای نظریه مهبانگ است که باعث میشود پذیرش آن به عنوان توصیف احتمالی گیتی شدنی به نظر برسد.
- "First Second of the Big Bang". How the Universe Works#Season 3. Discovery Science.
- [[[دانشنامه بریتانیکا|Encyclopedia Britannica]] "Big-bang model"] Check
|پیوند=
value (help) [مدل مه بانگ]. Retrieved 11 February 2015. More than one of|نشانی=
and|پیوند=
specified (help) - Wright, E. L. (9 May 2009). "What is the evidence for the Big Bang?". Frequently Asked Questions in Cosmology. UCLA, Division of Astronomy and Astrophysics. Retrieved 16 October 2009.
- «Planck reveals an almost perfect universe» [ماهواره پلانک از جهانی تقریباً کامل پرده برمیدارد]. Planck. ESA. ۲۰۱۳-۰۳-۲۱. دریافتشده در ۲۰۱۳-۰۳-۲۱.
- Kragh، H. (۱۹۹۶). Cosmology and Controversy. Princeton University Press. ص. ۳۱۸. شابک ۰-۶۹۱-۰۲۶۲۳-۸.
- "The cosmological constant and dark energy". Reviews of Modern Physics. 75 (2): 559–606. 2003. arXiv:astro-ph/0207347. Bibcode:2003RvMP...75..559P. doi:10.1103/RevModPhys.75.559.
|first1=
missing|last1=
in Authors list (help) - Gibson، C. H. (۲۰۰۱). «The First Turbulent Mixing and Combustion» (PDF). IUTAM Turbulent Mixing and Combustion.
- A bot will complete this citation soon. Click here to jump the queue arXiv:astro-ph/0110012.
- A bot will complete this citation soon. Click here to jump the queue arXiv:astro-ph/0501416.
- https://www.cfa.harvard.edu/seuforum/questions/
- Staff (۱۷ مارس ۲۰۱۴). «BICEP2 2014 Results Release». National Science Foundation. دریافتشده در ۱۸ مارس ۲۰۱۴.
- Clavin، Whitney (۱۷ مارس ۲۰۱۴). «NASA Technology Views Birth of the Universe». NASA. دریافتشده در ۱۷ مارس ۲۰۱۴.
- Overbye، Dennis (۱۷ مارس ۲۰۱۴). «Detection of Waves in Space Buttresses Landmark Theory of Big Bang». The New York Times. دریافتشده در ۱۷ مارس ۲۰۱۴.
- Overbye، Dennis (۲۴ مارس ۲۰۱۴). «Ripples From the Big Bang». New York Times. دریافتشده در ۲۴ مارس ۲۰۱۴.
- Hubble, E. (1929). "A Relation Between Distance and Radial Velocity Among Extra-Galactic Nebulae" [رابطهای میان فاصله و سرعت شعاعی در میان سحابیهای فراکهکشانی]. Proceedings of the National Academy of Sciences. 15 (3): 168–73. Bibcode:1929PNAS...15..168H. doi:10.1073/pnas.15.3.168. PMC 522427. PMID 16577160.
- Hawking, S.W (1973). The Large-Scale Structure of Space-Time. Cambridge University Press. ISBN 0-521-20016-4.
- Roos, M (2008). Astronomy and Astrophysics. EOLSS publishers.
- Drees, W.B (1990). Beyond the big bang: quantum cosmologies and God. Open Court Publishing. p. ۲۲۳–۲۲۴. ISBN 978-0-8126-9118-4.
- Weinberg, S. (1993). The First Three Minutes: A Modern View Of The Origin Of The Universe [سه دقیقه نخست: دیدگاهی نو در مورد پیدایش گیتی]. Basic Books. ISBN 0-465-02437-8.
- Bennett, C.L; Larson, L; Weiland, J.L (December 20, 2012). "Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results". Unknown parameter
|ماه=
ignored (help) - Guth, A.H (1998). The Inflationary Universe: Quest for a New Theory of Cosmic Origins. Vintage Books. ISBN 978-0-09-995950-2.
- Schewe, P (2005). "An Ocean of Quarks". Physics News Update. American Institute of Physics. ۷۲۸ (1=).
- Kolb and Turner (1988), chapter 6
- Kolb and Turner (1988), chapter 7
- Kolb and Turner (1988), chapter 4
- Peacock (1999), chapter 9
- Loeb، Abraham (اکتبر ۲۰۱۴). «The Habitable Epoch of the Early Universe». International Journal of Astrobiology. ۱۳ (۰۴): ۳۳۷–۳۳۹. doi:10.1017/S1473550414000196. دریافتشده در ۱۵ دسامبر ۲۰۱۴.
- Loeb، Abraham (۲ دسامبر ۲۰۱۳). «The Habitable Epoch of the Early Universe» (PDF). Arxiv. arXiv:1312.0613v3. دریافتشده در ۱۵ دسامبر ۲۰۱۴.
- Dreifus، Claudia (۲ دسامبر ۲۰۱۴). «Much-Discussed Views That Go Way Back - Avi Loeb Ponders the Early Universe, Nature and Life». New York Times. دریافتشده در ۳ دسامبر ۲۰۱۴.
- Spergel, D. N.; et al. (2003). "First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters". Astrophysical Journal Supplement. 148 (1): 175–194. arXiv:astro-ph/0302209. Bibcode:2003ApJS..148..175S. doi:10.1086/377226.
|first2=
missing|last2=
in Authors list (help) - Jarosik, N. "Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results" (PDF). NASA.
- Ivanchik, A.V; Potekhin, A.Y (1999). "The Fine-Structure Constant: A New Observational Limit on Its Cosmological Variation and Some Theoretical Consequences". Astronomy and Astrophysics: ۳۴۳: ۴۵۹. Bibcode:1999A&A...343..439I.
- Goodman, J. (1995). "Geocentrism Reexamined". Physical Review D. 52 (4): 1821. arXiv:astro-ph/9506068. Bibcode:1995PhRvD..52.1821G. doi:10.1103/PhysRevD.52.1821.
- d'Inverno, R (1992). Chapter 23. Introducing Einstein's Relativity. Oxford University Press. ISBN 0-19-859686-3.
- Kolb and Turner (1988), chapter 3
- «'Big bang' astronomer dies». BBC News. ۲۲ اوت ۲۰۰۱. بایگانیشده از روی نسخه اصلی در ۸ دسامبر ۲۰۰۸. دریافتشده در ۷ دسامبر ۲۰۰۸.
- Croswell، K. (۱۹۹۵). «Chapter ۹». The Alchemy of the Heavens. Random House.
- Mitton، S. (۲۰۰۵). Fred Hoyle: A Life in Science. Aurum Press. ص. ۱۲۷.
- Moskowitz، Clara (سپتامبر ۲۵, ۲۰۱۲). «Hubble Telescope Reveals Farthest View Into Universe Ever». Space.com. دریافتشده در سپتامبر ۲۶, ۲۰۱۲.
- Slipher, V.M (1913). "The Radial Velocity of the Andromeda Nebula". Lowell Observatory Bulletin. ۱: ۵۶–۵۷. Bibcode:1913LowOB...2...56S.
- Slipher, V.M (1915). "Spectrographic Observations of Nebulae". Popular Astronomy. ۲۳: ۲۱–۲۴. Bibcode:1915PA.....23Q..21S.
- Friedman، A.A. (۱۹۲۲). «Über die Krümmung des Raumes». Deutsche Physikalische Gesellschaft. ۱۰ (۱): ۳۷۷–۳۸۶. doi:10.1007/BF01332580. بیبکد:1922ZPhy...10..377F. (آلمانی)
- (ترجمه انگلیسی: Friedman, A. (1999). "On the Curvature of Space" [در باب خمش فضا]. General Relativity and Gravitation. ۳۱ (۱۲): ۱۹۹۱–۲۰۰۰. Bibcode:1999GReGr..31.1991F. doi:10.1023/A:1026751225741.)
- Lemaître، G. (۱۹۲۷). «Un univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des nébuleuses extragalactiques». Annals of the Scientific Society of Brussels. ۴۷A: ۴۱. (فرانسوی)
- (ترجمه انگلیسی: Lemaître (1931). "A Homogeneous Universe of Constant Mass and Growing Radius Accounting for the Radial Velocity of Extragalactic Nebulae". Monthly Notices of the Royal Astronomical Society. ۹۱: ۴۸۳–۴۹۰. Bibcode:1931MNRAS..91..483L. Unknown parameter
|نام 1=
ignored (help))
- (ترجمه انگلیسی: Lemaître (1931). "A Homogeneous Universe of Constant Mass and Growing Radius Accounting for the Radial Velocity of Extragalactic Nebulae". Monthly Notices of the Royal Astronomical Society. ۹۱: ۴۸۳–۴۹۰. Bibcode:1931MNRAS..91..483L. Unknown parameter
- Lemaître, G. (1931). "The Evolution of the Universe: Discussion". Nature. ۱۲۸ (۳۲۳۴): ۶۹۹–۷۰۱. Bibcode:1931Natur.128..704L. doi:10.1038/128704a0.
- Christianson, E. (1995). Edwin Hubble: Mariner of the Nebulae. Farrar, Straus and Giroux. ISBN 0-374-14660-8.
- Kragh، H. (۱۹۹۶). Cosmology and Controversy. Princeton (NJ): Princeton University Press. شابک ۰-۶۹۱-۰۲۶۲۳-۸.
- "People and Discoveries: Big Bang Theory". A Science Odyssey. PBS. Retrieved 9 March 2012.
- Eddington, A. (1931). "The End of the World: from the Standpoint of Mathematical Physics". Nature. ۱۲۷ (۳۲۰۳): ۴۴۷–۴۵۳. Bibcode:1931Natur.127..447E. doi:10.1038/127447a0.
- Appolloni, S. (17 June 2011). ""Repugnant", "Not Repugnant at All": How the Respective Epistemic Attitudes of Georges Lemaitre and Sir Arthur Eddington Influenced How Each Approached the Idea of a Beginning of the Universe". IBSU Scientific Journal. ۵ (۱): ۱۹–۴۴. ISSN 2233-3002.
- Lemaître، G. (۱۹۳۱). «The Beginning of the World from the Point of View of Quantum Theory». Nature. ۱۲۷ (۳۲۱۰): ۷۰۶. doi:10.1038/127706b0. بیبکد:1931Natur.127..706L.
- Milne, E.A. (1935). Relativity, Gravitation and World Structure. Oxford University Press. LCCN 3519093 Check
|lccn=
value (help). - Tolman، R.C. (۱۹۳۴). Relativity, Thermodynamics, and Cosmology. Oxford University Press. LCCN ۳۴۳۲۰۲۳ مقدار
|lccn=
را بررسی کنید (کمک). شابک ۰-۴۸۶-۶۵۳۸۳-۸. - Zwicky, F. (1929). "On the Red Shift of Spectral Lines through Interstellar Space". Proceedings of the National Academy of Sciences of the United States of America. ۱۵ (۱۰): ۷۷۳–۷۷۹. Bibcode:1929PNAS...15..773Z. doi:10.1073/pnas.15.10.773. PMC 522555. PMID 16577237.
- Hoyle, F. (1948). "A New Model for the Expanding Universe". Monthly Notices of the Royal Astronomical Society. ۱۰۸: ۳۷۲. Bibcode:1948MNRAS.108..372H.
- Alpher, R.A.; Bethe, H.; Gamow, G. (1948). "The Origin of Chemical Elements". Physical Review. ۷۳ (۷): ۸۰۳. Bibcode:1948PhRv...73..803A. doi:10.1103/PhysRev.73.803.
- Alpher, R.A.; Herman, R. (1948). "Evolution of the Universe". Nature. ۱۶۲ (۴۱۲۴): ۷۷۴. Bibcode:1948Natur.162..774A. doi:10.1038/162774b0.
- Singh, S. (21 April 2007). "Big Bang". SimonSingh.net. Archived from the original on 30 June 2007. Retrieved 28 May 2007.
- Penzias, A.A.; Wilson, R.W. (1965). "A Measurement of Excess Antenna Temperature at 4080 Mc/s". Astrophysical Journal. ۱۴۲: ۴۱۹. Bibcode:1965ApJ...142..419P. doi:10.1086/148307.
- Boggess, N.W.; et al. (1992). "The COBE Mission: Its Design and Performance Two Years after the launch". The Astrophysical Journal. ۳۹۷: ۴۲۰. Bibcode:1992ApJ...397..420B. doi:10.1086/171797. Unknown parameter
|نام 8=
ignored (help) - Spergel, D.N.; et al. (2006). "Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology". Astrophysical Journal Supplement. ۱۷۰ (۲): ۳۷۷. arXiv:astro-ph/0603449. Bibcode:2007ApJS..170..377S. doi:10.1086/513700.
- Krauss، L. (۲۰۱۲). A Universe From Nothing: Why there is Something Rather than Nothing. Free Press. ص. ۱۱۸. شابک ۹۷۸-۱-۴۵۱۶-۲۴۴۵-۸.
- Gladders، M.D.؛ و دیگران (۲۰۰۷). «Cosmological Constraints from the Red-Sequence Cluster Survey». The Astrophysical Journal. ۶۵۵ (۱): ۱۲۸–۱۳۴. arXiv:astro-ph/0603588. doi:10.1086/509909. بیبکد:2007ApJ...655..128G.
- The Four Pillars of the Standard Cosmology
- Sadoulet، B. «Direct Searches for Dark Matter». Astro2010: The Astronomy and Astrophysics Decadal Survey. The National Academies. دریافتشده در ۱۲ مارس ۲۰۱۲.
- Cahn، R. «For a Comprehensive Space-Based Dark Energy Mission». Astro2010: The Astronomy and Astrophysics Decadal Survey. The National Academies. دریافتشده در ۱۲ مارس ۲۰۱۲.
- Peacock (1999), chapter 3
- Srianand، R.؛ Petitjean، P.؛ Ledoux، C. (۲۰۰۰). «The microwave background temperature at the redshift of 2.33771». Nature. ۴۰۸ (۶۸۱۵): ۹۳۱–۹۳۵. arXiv:astro-ph/0012222. doi:10.1038/35050020. بیبکد:2000Natur.408..931S. چکیده ساده – رصدخانه جنوبی اروپا (دسامبر ۲۰۰۰).
- Gannon، Megan (دسامبر ۲۱, ۲۰۱۲). «New 'Baby Picture' of Universe Unveiled». Space.com. دریافتشده در دسامبر ۲۱, ۲۰۱۲.
- Wright، E.L. (۲۰۰۴). «Theoretical Overview of Cosmic Microwave Background Anisotropy». Measuring and Modeling the Universe. Carnegie Observatories Astrophysics Series. انتشارات دانشگاه کمبریج. ص. ۲۹۱. arXiv:astro-ph/0305591. شابک ۰-۵۲۱-۷۵۵۷۶-X. از پارامتر ناشناخته
|ویرایشگر=
صرفنظر شد (کمک) - Proceedings of the Los Angeles Meeting, DPF 99. arXiv:astro-ph/9903232. Bibcode 1999dpf..conf.....W.
- «A measurement of Omega from the North American test flight of BOOMERANG». Astrophys Journal. Institute of Physics (۵۳۶). ۱۹۹۹. دریافتشده در ۲۰۱۵-۰۵-۱۵. پارامتر
|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - P. de Bernardis؛ و دیگران (۲۰۰۰). «A Flat Universe from High-Resolution Maps of the Cosmic Microwave Background Radiation». Nature. Nature Publishing Group. ۴۰۴: ۹۵۵–۹۵۹. arXiv:astro-ph/0004404. doi:10.1038/35010035. پارامتر
|تاریخ بازیابی=
نیاز به وارد کردن|پیوند=
دارد (کمک) - A. D. Miller؛ و دیگران (۱۹۹۹). «A Measurement of the Angular Power Spectrum of the Cosmic Microwave Background from l = 100 to 400». The Astrophysical Journal Letters. ۵۲۴ (۱). arXiv:astro-ph/9906421. doi:10.1086/312293. بیبکد:1999ApJ...524L...1M.
- Kolb and Turner (1988), chapter 4
- Steigman، G. (۲۰۰۵). «Primordial Nucleosynthesis: Successes And Challenges». International Journal of Modern Physics E [Nuclear Physics]. ۱۵: ۱–۳۶. arXiv:astro-ph/0511534. doi:10.1142/S0218301306004028. بیبکد:2006IJMPE..15....1S.
- Introduction to cosmology. Addison-Wesley. ۲۰۰۳. شابک ۹۷۸-۰-۸۰۵۳-۸۹۱۲-۸. پارامتر
|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - A bot will complete this citation soon. Click here to jump the queue arXiv:astro-ph/0101009.
- Bertschinger، E. (۱۹۹۸). «Simulations of Structure Formation in the Universe». Annual Review of Astronomy and Astrophysics. ۳۶ (۱): ۵۹۹–۶۵۴. doi:10.1146/annurev.astro.36.1.599. بیبکد:1998ARA&A..36..599B.
- Fumagalli، M.؛ O'Meara، J. M.؛ Prochaska، J. X. (۲۰۱۱). «Detection of Pristine Gas Two Billion Years After the Big Bang». Science. ۳۳۴ (۶۰۶۰): ۱۲۴۵–۹. arXiv:1111.2334. doi:10.1126/science.1213581. PMID 22075722. بیبکد:2011Sci...334.1245F.
- «Astronomers Find Clouds of Primordial Gas from the Early Universe, Just Moments After Big Bang». Science Daily. ۱۰ نوامبر ۲۰۱۱. دریافتشده در ۱۳ نوامبر ۲۰۱۱.
- Perley، D. (۲۱ فوریه ۲۰۰۵). «Determination of the Universe's Age, to». University of California Berkeley, Astronomy Department. دریافتشده در ۲۷ ژانویه ۲۰۱۲.
- Srianand، R.؛ Noterdaeme، P.؛ Ledoux، C.؛ Petitjean، P. (۲۰۰۸). «First detection of CO in a high-redshift damped Lyman-α system». Astronomy and Astrophysics. ۴۸۲ (۳): L۳۹. doi:10.1051/0004-6361:200809727. بیبکد:2008A&A...482L..39S.
- A bot will complete this citation soon. Click here to jump the queue arXiv:1112.1862v1.
- Belusevic، R. (۲۰۰۸). Relativity, Astrophysics and Cosmology. Wiley-VCH. ص. ۱۶. شابک ۳-۵۲۷-۴۰۷۶۴-۲.
- Overbye، Dennis (۱۹ ژوئن ۲۰۱۴). «Astronomers Hedge on Big Bang Detection Claim». New York Times. دریافتشده در ۲۰ ژوئن ۲۰۱۴.
- Amos، Jonathan (۱۹ ژوئن ۲۰۱۴). «Cosmic inflation: Confidence lowered for Big Bang signal». BBC News. دریافتشده در ۲۰ ژوئن ۲۰۱۴.
- «Detection of B-Mode Polarization at Degree Angular Scales by BICEP2». Physical Review Letters. ۱۱۲: ۲۴۱۱۰۱. ۱۹ ژوئن ۲۰۱۴. arXiv:1403.3985. doi:10.1103/PhysRevLett.112.241101. PMID 24996078. بیبکد:2014PhRvL.112x1101A. پارامتر
|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - «Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes». ArXiv. ۱۹ سپتامبر ۲۰۱۴. arXiv:1409.5738. بیبکد:2014arXiv1409.5738P. دریافتشده در ۲۲ سپتامبر ۲۰۱۴. پارامتر
|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - Overbye، Dennis (۲۲ سپتامبر ۲۰۱۴). «Study Confirms Criticism of Big Bang Finding». New York Times. دریافتشده در ۲۲ سپتامبر ۲۰۱۴.
- .
- Fergus, E. J. (ed), ed. DOI:10.1111/j.1749-6632.1989.tb50513.x.
- Kolb and Turner, chapter 6
- Sakharov، A.D. (۱۹۶۷). «Violation of CP Invariance, C Asymmetry and Baryon Asymmetry of the Universe». Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, Pisma. ۵: ۳۲. (روسی)
- (ترجمه شده در Journal of Experimental and Theoretical Physics Letters 5, 24 (1967).)
- Mortonson, Michael J.; Weinberg, David H.; White, Martin (Dec 2013). "Dark Energy: A Short Review" (PDF). Particle Data Group 2014 Review of Particle Physics.
- Rugh, S.E.; Zinkernagel, H. (December 2002). "The quantum vacuum and the cosmological constant problem". Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics. 33 (4): 663–705. doi:10.1016/S1355-2198(02)00033-3.
- Keel، B. «Dark Matter». دریافتشده در ۲۸ مه ۲۰۰۷.
- Yao، W.M.؛ و دیگران (۲۰۰۶). «Review of Particle Physics: Dark Matter» (PDF). Journal of Physics G. ۳۳ (۱): ۱–۱۲۳۲. arXiv:astro-ph/0601168. doi:10.1088/0954-3899/33/1/001. بیبکد:2006JPhG...33....1Y.
- Bullock، James. «Notes on the Missing Satellites Problem» (PDF). XX Canary Islands Winter School of Astrophysics on Local Group Cosmology,.
- Diemand، Jürg؛ Zemp، Marcel؛ Moore، Ben؛ Stadel، Joachim؛ Carollo، C. Marcella (12/2005). «Cusps in cold dark matter haloes». Monthly Notices of the Royal Astronomical Society. ۳۶۴ (۲): ۶۶۵-۶۷۳. doi:10.1111/j.1365-2966.2005.09601.x. تاریخ وارد شده در
|تاریخ=
را بررسی کنید (کمک) - Dodelson، Scott (دسامبر ۲۰۱۱). «The Real Problem with MOND» (PDF). Honorable Mention, Gravity Research Foundation 2011 Awards.
- Kolb and Turner (1988), chapter 8
- D. N. Spergel؛ و دیگران (۲۰۰۷). «Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology» (PDF). The Astrophysical Journal Supplement Series. ۱۷۰: ۳۷۷–۴۰۸. arXiv:astro-ph/0603449. doi:10.1086/513700. بیبکد:2007ApJS..170..377S.
- The Road to Reality. Vintage books. ۲۰۰۷. شابک ۰-۶۷۹-۷۷۶۳۱-۱. پارامتر
|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - Kolb and Turner, chapter 8
- .
- Kolb and Turner, 1988, chapter 3
- Griswold، Britt (۲۰۱۲). «What is the Ultimate Fate of the Universe?». Universe 101 Big Bang Theory. NASA.
- «A dying universe: the long-term fate and evolution of astrophysical objects». Reviews of Modern Physics. ۶۹ (۲): ۳۳۷–۳۷۲. ۱۹۹۷. arXiv:astro-ph/9701131. doi:10.1103/RevModPhys.69.337. بیبکد:1997RvMP...69..337A. پارامتر
|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک). - Caldwell، R. R؛ Kamionkowski، M.؛ Weinberg، N. N. (۲۰۰۳). «Phantom Energy and Cosmic Doomsday». Physical Review Letters. ۹۱ (۷): ۰۷۱۳۰۱. arXiv:astro-ph/0302506. doi:10.1103/PhysRevLett.91.071301. PMID 12935004. بیبکد:2003PhRvL..91g1301C.
- Hawking، S. W.؛ Ellis، G. F. R. (۱۹۷۳). The Large Scale Structure of Space-Time. Cambridge (UK): Cambridge University Press. شابک ۰-۵۲۱-۰۹۹۰۶-۴.
- Hartle، J.H.؛ Hawking، S. (۱۹۸۳). «Wave Function of the Universe». Physical Review D. ۲۸ (۱۲): ۲۹۶۰. doi:10.1103/PhysRevD.28.2960. بیبکد:1983PhRvD..28.2960H.
- Bird، P. (۲۰۱۱). «Determining the Big Bang State Vector» (PDF). بایگانیشده از اصلی (PDF) در ۲۹ سپتامبر ۲۰۱۸. دریافتشده در ۲۵ فوریه ۲۰۱۳.
- Langlois، D. (۲۰۰۲). «Brane Cosmology: An Introduction». Progress of Theoretical Physics Supplement. ۱۴۸: ۱۸۱–۲۱۲. arXiv:hep-th/0209261. doi:10.1143/PTPS.148.181. بیبکد:2002PThPS.148..181L.
- A bot will complete this citation soon. Click here to jump the queue arXiv:hep-th/0205259.
- Than، K. (۲۰۰۶). «Recycled Universe: Theory Could Solve Cosmic Mystery». Space.com. دریافتشده در ۳ ژوئیه ۲۰۰۷.
- Kennedy، B. K. (۲۰۰۷). «What Happened Before the Big Bang?». بایگانیشده از اصلی در ۴ ژوئیه ۲۰۰۷. دریافتشده در ۳ ژوئیه ۲۰۰۷.
- Linde، A. (۱۹۸۶). «Eternal Chaotic Inflation». Modern Physics Letters A. ۱ (۲): ۸۱. doi:10.1142/S0217732386000129. بیبکد:1986MPLA....1...81L.
- Linde، A. (۱۹۸۶). «Eternally Existing Self-Reproducing Chaotic Inflationary Universe». Physics Letters B. ۱۷۵ (۴): ۳۹۵–۴۰۰. doi:10.1016/0370-2693(86)90611-8. بیبکد:1986PhLB..175..395L.
- Harris، J.F. (۲۰۰۲). Analytic philosophy of religion. Springer. ص. ۱۲۸. شابک ۹۷۸-۱-۴۰۲۰-۰۵۳۰-۵.
- Frame، T. (۲۰۰۹). Losing my religion. UNSW Press. ص. ۱۳۷–۱۴۱. شابک ۹۷۸-۱-۹۲۱۴۱۰-۱۹-۲.
- Harrison، P. (۲۰۱۰). The Cambridge Companion to Science and Religion. Cambridge University Press. ص. ۹. شابک ۹۷۸-۰-۵۲۱-۷۱۲۵۱-۴.
- Harris 2002, p. 129
- Craig، William Lane (۱۹۹۹). «The ultimate question of origins: God and the beginning of the Universe». Astrophysics and Space Science. ۲۶۹-۲۷۰ (۱-۴): ۷۲۳–۷۴۰. doi:10.1007/978-94-011-4114-7_85.
- Asad، Muhammad (۱۹۸۴). The Message of the Qu'rán. Gibraltar, Spain: Dar al-Andalus Limited. شابک ۱-۹۰۴۵۱۰-۰۰-۰.
- Sagan، C. (۱۹۸۸). introduction to A Brief History of Time by Stephen Hawking. Bantam Books. ص. X. شابک ۰-۵۵۳-۳۴۶۱۴-۸.
... a universe with no edge in space, no beginning or end in time, and nothing for a Creator to do.
- «Issues in the philosophy of cosmology». Philosophy of Physics: ۱۱۸۳–۱۲۸۵. ۲۰۰۷-۰۸-۰۸. doi:10.1016/B978-044451560-5/50014-2. شابک ۹۷۸۰۴۴۴۵۱۵۶۰۵. پارامتر
|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - Alexander، Vilenkin (۱۹۸۲-۱۱-۰۴). «Creation of universes from nothing». Physics Letters B. ۱۱۷ (۱–۲): ۲۵–۲۸. doi:10.1016/0370-2693(82)90866-8. شاپا 0370-2693. دریافتشده در ۲۰۱۲-۰۲-۲۸.
- Manson، N.A. (۱۹۹۳). God and Design: The Teleological Argument and Modern Science. Routledge. شابک ۹۷۸-۰-۴۱۵-۲۶۳۴۴-۳.
The Big Bang theory strikes many people as having theological implications, as shown by those who do not welcome those implications.
- Harris، J.F. (۲۰۰۲). Analytic Philosophy of Religion. Springer Press. شابک ۹۷۸-۱-۴۰۲۰-۰۵۳۰-۵.
Both theists and physicists have seen the big bang theory as leaving open such an opportunity for a theistic explanation.
- The Big Bang Never Happened: A Startling Refutation of the Dominant Theory of the Origin of the Universe. Vintage Books. ۲۰۱۰-۱۲-۱۵. شابک ۹۷۸۰۳۰۷۷۷۳۵۴۸. دریافتشده در ۲۰۱۲-۰۳-۱۶.
From theologians to physicists to novelists, it is widely believed that the Big Bang theory supports Christian concepts of a creator. In February 1989, for example, the front-page article of the New York Times Book Review argued that scientists argued that scientists and novelists were returning to God, in large part through the influence of the Big Bang.
پارامتر|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - Analytic Philosophy of Feligion. Springer Science. ۲۰۰۲. شابک ۹۷۸۱۴۰۲۰۰۵۳۰۵.
THE KALAM COSMOLOGICAL ARGUMENT Perhaps the best known and most clearly formulated version of the cosmological argument that incorporates the fundamental concepts of big bang theory is found in the work of William Lane Craig.
پارامتر|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - McGrath، A.E. (۲۰۱۱). Science and Religion. John Wiley & Sons. شابک ۹۷۸-۱-۴۴۴۳-۵۸۰۸-۷.
It will be clear that this type of argument relates directly to modern cosmological research, particularly the "big bang" theory of the origins of the cosmos. This is also true of the kalam version of the cosmological argument, to which we now turn.
- Kragh، H. (۱۹۹۶). Cosmology and Controversy. Princeton (NJ): انتشارات دانشگاه پرینستون. شابک ۰-۶۹۱-۰۲۶۲۳-۸.
- Kragh، H. (۲۰۰۸). Entropic Creation. Ashgate Publishing. ص. ۲۲۶. شابک ۹۷۸-۰-۷۵۴۶-۶۴۱۴-۷.
Andrei Zhdanov, Stalin's notorious chief ideologue, said in a speech of 1947 that Lemaître and his kindred spirits were 'Falsifiers of science [who] wanted to revive the fairy tale of the origin of the world from nothing … Another failure of the 'theory' in question consists in the fact that it brings us to the idealistic attitute of assuming the world to be finite.'
- Essential Islam: a comprehensive guide to belief and practice. ABC-CLIO. ۲۰۱۰.
اگرچه هدف قرآن این نبوده که یک کتاب علمی فیزیکی باشد، بسیاری از مفسرین مسلمان در قرآن به دنبال آیاتی میگردند که با یافتههای تازه دانش نوین همخوانی داشته باشند، تا بصیرت مستقل از زمان قرآن را اثبات کنند. برخی از این همخوانیها شامل ارجاعاتی به مهبانگ، پادماده، ستارگان چرخان، همجوشی رادیواکتیو، صفحههای تکتونیک و لایه اوزون میشود.
پارامتر|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - Encyclopædia of the history of science, technology, and medicine in non-western cultures. Springer Press. ۱۹۹۷.
Subjects ranging from relativity, quantum mechanics, and the big bang theory to the entire field of embryology and much of modern geology have been discovered in the Qur'an.
از پارامتر ناشناخته|ویرایشگر=
صرفنظر شد (کمک) - Islam in Malawi week 1998. University of Malawi. ۲۰۰۰.
"میدانی قرآن دربارهٔ مهبانگ چه میگوید؟ قرآن میگوید: آیا کافران ندانستهاند که آسمانها و زمین بههم بسته و پیوسته بودند و ما آن دو را شکافته و از هم بازکردیم و هر چیز زندهای را از آب آفریدیم؟ پس آیا ایمان نمیآورند؟ قرآن مجید ۲۱:۳۰.
- quran.com سوره انبیا ۲۱:۳۰ سورة الأنبیاء
- tanzil.net
- «آیه 11 سوره فصلت - دانشنامهٔ اسلامی». wiki.ahlolbait.com. دریافتشده در ۲۰۲۱-۰۳-۳۰.
- Ferris، T. (۱۹۸۸). Coming of age in the Milky Way. Morrow. ص. ۲۷۴, ۴۳۸. شابک ۹۷۸-۰-۶۸۸-۰۵۸۸۹-۰., citing Berger، A. (۱۹۸۴). The Big bang and Georges Lemaître: proceedings of a symposium in honour of G. Lemaître fifty years after his initiation of big-bang cosmology, Louvainla-Neuve, Belgium, 10–13 October 1983. D. Reidel. ص. ۳۸۷. شابک ۹۷۸-۹۰-۲۷۷-۱۸۴۸-۸.
- "Ai soci della Pontificia Accademia delle Scienze, 22 novembre 1951 - Pio XII, Discorsi" (به ایتالیایی). Tipografia Poliglotta Vaticana. 1951-11-02. Retrieved ۲۰۱۲-۰۲-۲۳.
|first1=
missing|last1=
in Authors list (help) - The Hindu World. Psychology Press. ۲۰۰۴.
In the Vedic cosmogonies, the question of what caused the primordial desire does not arise; like the Big Bang of modern cosmology, the primal impulse is beyond all time and causation, so it makes no sense to ask what preceded it or what caused it. However, in the Hindu cosmology which we find in the Puranas and other non-Vedic Sanskrit texts, time has no absolute beginning; it is infinite and cyclic and so is kama.
پارامتر|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - The Routledge companion to the study of religion. Taylor & Francis. ۲۰۱۰.
There are also other cosmological models of the universe besides the Big bang model, including eternal universe theories - views more in keeping with Hindu cosmologies than with traditional theistic concepts of the cosmos.
پارامتر|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - Encyclopædia of Hinduism: T-Z, Volume 5. Sarup & Sons. ۱۹۹۹.
The theory is known as the 'Big Bang theory' and it reminds us of the Hindu idea that everything came from the Brahman which is "subtler than the atom, greater than the greatest" (Kathopanishad-2-20).
پارامتر|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک) - Kenneth, Kramer (1986), World scriptures: an introduction to comparative religions, p. 34, ISBN 978-0-8091-2781-8
- Human Being in Depth: A Scientific Approach to Religion. SUNY Press. ۱۹۹۱. ص. ۲۱. شابک ۰-۷۹۱۴-۰۶۷۹-۲. پارامتر
|first1=
بدون|last1=
در Authors list وارد شدهاست (کمک)
یادداشتها
- جزئیات بیشتر در مورد آزمونهای نسبیت عام را در نوشتار آزمونهای نسبیت عام ببینید
- انرژی تاریک در شکل یک ثابت کیهانی جهان را به سوی وضعیت تخت میراند؛ هرچند که شکل جهان ما در طول چند میلیارد سال پیش از اینکه انرژی تاریک چگالی قابل توجهی پیدا کند، نیز تخت بودهاست.
پیوند به بیرون
- مهبانگ (انفجار بزرگ)
- دانش فضایی وبگاه فارسی دانش فضایی ایران دربارهٔ علوم و فناوری فضایی
- نظریه بیگ بنگ بیرقیب است/ تناقضات تئوری دنیای بدون انفجار بزرگ
- Big bang model with animated graphics
- Cosmology در کرلی
- Evidence for the Big Bang
برای مطالعهٔ بیشتر
- Alpher، R.A.؛ Herman، R. (۱۹۸۸). «Reflections on early work on 'big bang' cosmology». Physics Today. ۸ (۸): ۲۴–۳۴. doi:10.1063/1.881126. بیبکد:1988PhT....41h..24A.
- American Institute of Physics. «Cosmic Journey: A History of Scientific Cosmology». American Institute of Physics.
- Barrow، J.D. (۱۹۹۴). The Origin of the Universe: To the Edge of Space and Time. New York: Phoenix. شابک ۰-۴۶۵-۰۵۳۵۴-۸.
- Davies، P.C.W. (۱۹۹۲). The Mind of God: The scientific basis for a rational world. Simon & Schuster. شابک ۰-۶۷۱-۷۱۰۶۹-۹.
- Feuerbacher، B.؛ Scranton، R. (۲۰۰۶). «Evidence for the Big Bang». TalkOrigins.
- Mather، J.C.؛ Boslough، J. (۱۹۹۶). The very first light: the true inside story of the scientific journey back to the dawn of the Universe. Basic Books. ص. ۳۰۰. شابک ۰-۴۶۵-۰۱۵۷۵-۱.
- Singh، S. (۲۰۰۴). Big Bang: The origins of the universe. Fourth Estate. شابک ۰-۰۰-۷۱۶۲۲۰-۰.
- Scientific American. (۲۰۰۵). «Misconceptions about the Big Bang». Scientific American. از پارامتر ناشناخته
|ماه=
صرفنظر شد (کمک) - Scientific American. (۲۰۰۶). «The First Few Microseconds». Scientific American. از پارامتر ناشناخته
|ماه=
صرفنظر شد (کمک)
در ویکیانبار پروندههایی دربارهٔ مهبانگ موجود است. |